Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 879516, 12 pages
http://dx.doi.org/10.1155/2013/879516
Research Article

Therapeutic Effect of MG132 on the Aortic Oxidative Damage and Inflammatory Response in OVE26 Type 1 Diabetic Mice

1The Second Hospital of Jilin University, Changchun 130041, China
2KCHRI, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
3Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
4The First Hospital of Jilin University, Changchun 130021, China
5Normal Bethune Medical College of Jilin University, Changchun 130021, China
6Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, Inner Mongolia 022150, China
7Chinese American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325000, China
8Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
9Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China

Received 15 January 2013; Accepted 28 February 2013

Academic Editor: Narasimham L. Parinandi

Copyright © 2013 Xiao Miao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. King and M. R. Loeken, “Hyperglycemia-induced oxidative stress in diabetic complications,” Histochemistry and Cell Biology, vol. 122, no. 4, pp. 333–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. I. K. Jeong and G. L. King, “New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia,” Diabetes & Metabolism Journal, vol. 35, no. 1, pp. 8–11, 2011. View at Google Scholar
  3. J. M. Lee and J. A. Johnson, “An important role of Nrf2-ARE pathway in the cellular defense mechanism,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 2, pp. 139–143, 2004. View at Google Scholar · View at Scopus
  4. V. O. Tkachev, E. B. Menshchikova, and N. K. Zenkov, “Mechanism of the Nrf2/Keap1/ARE signaling system,” Biochemistry, vol. 76, no. 4, pp. 407–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Li, S. Liu, L. Miao, and L. Cai, “Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 216512, 7 pages, 2012. View at Publisher · View at Google Scholar
  6. U. Jalonen, E. L. Paukkeri, and E. Moilanen, “Compounds that increase or mimic cyclic adenosine monophosphate enhance tristetraprolin degradation in lipopolysaccharide-treated murine J774 macrophages,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 2, pp. 514–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Jiang, Z. Huang, Y. Lin, Z. Zhang, D. Fang, and D. D. Zhang, “The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 59, no. 4, pp. 850–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. B. de Haan, “Nrf2 activators as attractive therapeutics for diabetic nephropathy,” Diabetes, vol. 60, no. 11, pp. 2683–2684, 2011. View at Google Scholar
  10. Z. Ungvari, L. Bailey-Downs, T. Gautam et al., “Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia,” American Journal of Physiology, vol. 300, no. 4, pp. H1133–H1140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Ungvari, L. Bailey-Downs, D. Sosnowska et al., “Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response,” American Journal of Physiology, vol. 301, no. 2, pp. H363–H372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Liu, S. Yu, W. Xu, and J. Xu, “Enhancement of 26S proteasome functionality connects oxidative stress and vascular endothelial inflammatory response in diabetes mellitus,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2131–2140, 2012. View at Google Scholar
  13. N. Wilck, M. Fechner, H. Dreger et al., “Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 6, pp. 1418–1426, 2012. View at Google Scholar
  14. P. N. Epstein, P. A. Overbeek, and A. R. Means, “Calmodulin-induced early-onset diabetes in transgenic mice,” Cell, vol. 58, no. 6, pp. 1067–1073, 1989. View at Google Scholar · View at Scopus
  15. S. Zheng, W. T. Noonan, N. S. Metreveli et al., “Development of late-stage diabetic nephropathy in OVE26 diabetic mice,” Diabetes, vol. 53, no. 12, pp. 3248–3257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. F. Luo, W. Qi, B. Feng et al., “Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome,” Life Sciences, vol. 88, no. 11-12, pp. 512–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Chen, Y. Ma, R. Meng et al., “MG132, a proteasome inhibitor, attenuates pressure-overload-induced cardiac hypertrophy in rats by modulation of mitogen-activated protein kinase signals,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 4, pp. 253–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Meiners, B. Hocher, A. Weller et al., “Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome,” Hypertension, vol. 44, no. 4, pp. 471–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Feng, M. E. Deerhake, R. Keating et al., “Genetic analysis of blood pressure in 8 mouse intercross populations,” Hypertension, vol. 54, no. 4, pp. 802–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Z. Bai, J. Sun, H. Wu et al., “Decrease in calcium-sensing receptor in the progress of diabetic cardiomyopathy,” Diabetes Research and Clinical Practice, vol. 95, no. 3, pp. 378–385, 2012. View at Google Scholar
  21. Y. Bai, Y. Tan, B. Wang et al., “Deletion of angiotensin II type 1 receptor gene or scavenge of superoxide prevents chronic alcohol-induced aortic damage and remodelling,” Journal of Cellular and Molecular Medicine, vol. 16, no. 10, pp. 2530–2538, 2012. View at Google Scholar
  22. P. E. Pergola, M. Krauth, J. W. Huff et al., “Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b-4 CKD,” American Journal of Nephrology, vol. 33, no. 5, pp. 469–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. E. Pergola, P. Raskin, R. D. Toto et al., “Bardoxolone methyl and kidney function in CKD with type 2 diabetes,” The New England Journal of Medicine, vol. 365, no. 4, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Inada, H. Kanamori, H. Arai et al., “A model for diabetic nephropathy: advantages of the inducible cAMP early repressor transgenic mouse over the streptozotocin-induced diabetic mouse,” Journal of Cellular Physiology, vol. 215, no. 2, pp. 383–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. E. Wold and J. Ren, “Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism,” Biochemical and Biophysical Research Communications, vol. 318, no. 4, pp. 1066–1071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Teiken, J. L. Audettey, D. I. Laturnus, S. Zheng, P. N. Epstein, and E. C. Carlson, “Podocyte loss in aging OVE26 diabetic mice,” Anatomical Record, vol. 291, no. 1, pp. 114–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Yang, Y. Tan, F. Zhao et al., “Angiotensin II plays a critical role in diabetic pulmonary fibrosis most likely via activation of nadph oxidase-mediated nitrosative damage,” American Journal of Physiology, vol. 301, no. 1, pp. E132–E144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Oelze, M. Knorr, S. Schuhmacher et al., “Vascular dysfunction in streptozotocin-induced experimental diabetes strictly depends on insulin deficiency,” Journal of Vascular Research, vol. 48, no. 4, pp. 275–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Gao, H. Zhang, A. M. Schmidt, and C. Zhang, “AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice,” American Journal of Physiology, vol. 295, no. 2, pp. H491–H498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. Singh, R. S. Guleria, I. T. Nizamutdinova, K. M. Baker, and J. Pan, “High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2632–2644, 2012. View at Google Scholar
  31. S. Wang, M. Zhang, B. Liang et al., “AMPKα2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes,” Circulation Research, vol. 106, no. 6, pp. 1117–1128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Xu, S. Wang, M. Zhang, Q. Wang, S. Asfa, and M. H. Zou, “Tyrosine nitration of PA700 links proteasome activation to endothelial dysfunction in mouse models with cardiovascular risk factors,” PLoS ONE, vol. 7, no. 1, Article ID e29649, 2012. View at Google Scholar