Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 957054, 10 pages
http://dx.doi.org/10.1155/2013/957054
Review Article

Oxidative Stress and Antioxidant Activity in Hypothermia and Rewarming: Can RONS Modulate the Beneficial Effects of Therapeutic Hypothermia?

Departament de Fisiologia i Immunologia, Universitat de Barcelona, Avenida Diagonal 643, 08028 Barcelona, Spain

Received 25 March 2013; Accepted 21 October 2013

Academic Editor: Honglian Shi

Copyright © 2013 Norma Alva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Hanania and J. L. Zimmerman, “Accidental hypothermia,” Critical Care Clinics, vol. 15, no. 2, pp. 235–249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evidence for active brown adipose tissue in adult humans,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 2, pp. E444–E452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Nedergaard and B. Cannon, “The changed metabolic world with human brown adipose tissue: therapeutic visions,” Cell Metabolism, vol. 11, no. 4, pp. 268–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. D. Van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Ouellet, S. M. Labbé, D. P. Blondin et al., “Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans,” The Journal of Clinical Investigation, vol. 122, no. 2, pp. 545–552, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Marx, R. Hockberger, and R. Walls, Rosen's Emergency Medicine: Concepts and Clinical Practice, Mosby, Elsevier, Philadelphia, Pa, USA, 7th edition, 2010.
  7. D. W. Marion, Y. Leonov, M. Ginsberg et al., “Resuscitative hypothermia,” Critical Care Medicine, vol. 24, no. 2, pp. S81–S89, 1996. View at Google Scholar · View at Scopus
  8. L. M. Gentilello, “Advances in the management of hypothermia,” Surgical Clinics of North America, vol. 75, no. 2, pp. 243–256, 1995. View at Google Scholar · View at Scopus
  9. S. S. Cheung, D. L. Montie, M. D. White, and D. Behm, “Changes in manual dexterity following short-term hand and forearm immersion in 10°c water,” Aviation Space and Environmental Medicine, vol. 74, no. 9, pp. 990–993, 2003. View at Google Scholar · View at Scopus
  10. P. T. Schumacker, J. Rowland, S. Saltz, D. P. Nelson, and L. D. H. Wood, “Effects of hyperthermia and hypothermia on oxygen extraction by tissues during hypovolemia,” Journal of Applied Physiology, vol. 63, no. 3, pp. 1246–1252, 1987. View at Google Scholar · View at Scopus
  11. J. Kofstad, “Blood gases and hypothermia: some theoretical and practical considerations,” Scandinavian Journal of Clinical and Laboratory Investigation, Supplement, vol. 56, no. 224, pp. 21–26, 1996. View at Google Scholar · View at Scopus
  12. O. Prakash, “Hypothermia and acid-base regulation in infants,” Clinics in Perinatology, vol. 14, no. 1, pp. 199–225, 1987. View at Google Scholar · View at Scopus
  13. K. H. Polderman, “Mechanisms of action, physiological effects, and complications of hypothermia,” Critical Care Medicine, vol. 37, no. 7, pp. S186–S202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Polderman, “Hypothermia, immune suppression and SDD: can we have our cake and eat it?” Critical Care, vol. 15, no. 2, article 144, 2011. View at Google Scholar · View at Scopus
  15. D. Maclean and D. Emslie-Smith, Accidental Hypothermia, Blackwell Scientific, Melbourne, Australia, 1977.
  16. K. H. Polderman, “Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence,” Intensive Care Medicine, vol. 30, no. 4, pp. 556–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. H. Polderman and J. Callaghan, “Equipment review: cooling catheters to induce therapeutic hypothermia?” Critical Care, vol. 10, no. 6, article 234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Alva, T. Carbonell, and J. Palomeque, “A model of deep experimental hypothermia and rewarming in rat,” Journal of Thermal Biology, vol. 29, no. 4-5, pp. 259–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. D. Andrews, H. L. Sinclair, C. G. Battison et al., “European society of intensive care medicine study of therapeutic hypothermia (32–35°C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial),” Trials, vol. 12, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Lampe and L. B. Becker, “State of the art in therapeutic hypothermia,” Annual Review of Medicine, vol. 62, pp. 79–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Slikker III, V. G. Desai, H. Duhart, R. Feuers, and S. Z. Imam, “Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells,” Free Radical Biology and Medicine, vol. 31, no. 3, pp. 405–411, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Khaliulin, S. J. Clarke, H. Lin, J. Parker, M.-S. Suleiman, and A. P. Halestrap, “Temperature preconditioning of isolated rat hearts—a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore,” Journal of Physiology, vol. 581, no. 3, pp. 1147–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Kozar, “Hypothermia hype: is it worth it?” Critical Care Medicine, vol. 36, no. 5, pp. 1676–1677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Nolan, C. D. Deakin, J. Soar, B. W. Böttiger, and G. Smith, “European Resuscitation Council Guidelines for Resuscitation 2005: section 4. Adult advanced life support,” Resuscitation, vol. 67, no. 1, pp. S39–S86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. D. Deakin, J. P. Nolan, J. Soar et al., “European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support,” Resuscitation, vol. 81, no. 10, pp. 1305–1352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. S. Han, J. Park, J.-H. Kim, and K. Suk, “Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect,” Current Neuropharmacology, vol. 10, no. 1, pp. 80–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Fischer, D. Renz, M. Wiesnet, W. Schaper, and G. F. Karliczek, “Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells,” Molecular Brain Research, vol. 74, no. 1-2, pp. 135–144, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Riess, A. K. S. Camara, L. G. Kevin, J. An, and D. F. Stowe, “Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17°C ischemia in intact hearts,” Cardiovascular Research, vol. 61, no. 3, pp. 580–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Alfaro and L. Palacios, “Comparison of acid/base status in conscious and anaesthetized rats during acute hypothermia,” Pflugers Archiv European Journal of Physiology, vol. 424, no. 5-6, pp. 416–422, 1993. View at Google Scholar · View at Scopus
  30. F. Van Breukelen, G. Krumschnabel, and J. E. Podrabsky, “Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates,” Apoptosis, vol. 15, no. 3, pp. 386–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. C. Fleck and H. V. Carey, “Modulation of apoptotic pathways in intestinal mucosa during hibernation,” The American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 289, no. 2, pp. R586–R595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. McMullen and J. M. Hallenbeck, “Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus,” Journal of Comparative Physiology B, vol. 180, no. 6, pp. 927–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Alva, D. Azuara, J. Palomeque, and T. Carbonell, “Deep hypothermia protects against acute hypoxia in vivo in rats: a mechanism related to the attenuation of oxidative stress,” Experimental Physiology, vol. 98, no. 6, pp. 1115–1124, 2013. View at Publisher · View at Google Scholar
  34. E. Siendones, D. Fouad, M. J. M. Díaz-Guerra, M. De La Mata, L. Boscá, and J. Muntané, “PGE1-induced NO reduces apoptosis by D-galactosamine through attenuation of NF-κB and NOS-2 expression in rat hepatocytes,” Hepatology, vol. 40, no. 6, pp. 1295–1303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Han, M. Karabiyikoglu, S. Kelly, R. A. Sobel, and M. A. Yenari, “Mild hypothermia inhibits nuclear factor-κB translocation in experimental stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 5, pp. 589–598, 2003. View at Google Scholar · View at Scopus
  36. D. J. A. Brown, H. Brugger, J. Boyd, and P. Paal, “Accidental hypothermia,” The New England Journal of Medicine, vol. 367, no. 20, pp. 1930–1938, 2012. View at Google Scholar
  37. N. P. Aardal, K. Svanes, and K. E. Egenberg, “Effect of hypothermia and pentobarbital anaesthesia on the distribution of cardiac output in rabbits,” European Surgical Research, vol. 5, no. 5, pp. 362–372, 1973. View at Google Scholar · View at Scopus
  38. R. Sabharwal, E. J. Johns, and S. Egginton, “The influence of acute hypothermia on renal function of anaesthetized euthermic and acclimatized rats,” Experimental Physiology, vol. 89, no. 4, pp. 455–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Tveita, M. Skandfer, H. Refsum, and K. Ytrehus, “Experimental hypothermia and rewarming: changes in mechanical function and metabolism of rat hearts,” Journal of Applied Physiology, vol. 80, no. 1, pp. 291–297, 1996. View at Google Scholar · View at Scopus
  40. N. Alva, T. Carbonell, and J. Palomeque, “Deep hypothermia impact on acid-base parameters and liver antioxidant status in an in vivo rat model,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 6, pp. 471–478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. D. McArthur, M. L. Jourdan, and L. C. H. Wang, “Prolonged stable hypothermia: effect on blood gases and pH in rats and ground squirrels,” The American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 262, no. 2, pp. R190–R197, 1992. View at Google Scholar · View at Scopus
  42. K. Thorsen, K. G. Ringdal, K. Strand, E. Søreide, J. Hagemo, and K. Søreide, “Clinical and cellular effects of hypothermia, acidosis and coagulopathy in major injury,” British Journal of Surgery, vol. 98, no. 7, pp. 894–907, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. T.-F. Lee, J. Westly, and L. C. H. Wang, “Effects of hetastarch and mannitol on prolonging survival in stable hypothermia in rats,” The American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 278, no. 4, pp. R1040–R1047, 2000. View at Google Scholar · View at Scopus
  44. X. Wu, J. Stezoski, P. Safar et al., “Mild hypothermia during hemorrhagic shock in rats improves survival without significant effects on inflammatory responses,” Critical Care Medicine, vol. 31, no. 1, pp. 195–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. R. D. Guzy, B. Hoyos, E. Robin et al., “Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing,” Cell Metabolism, vol. 1, no. 6, pp. 401–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. C. Gutteridge and B. Halliwell, Free Radicals and Antioxidants in the Year 2000—A Historical Look to the Future, New York Academy of Sciences, New York, NY, USA, 2000.
  48. S. L. Thompson-Gorman and J. L. Zweier, “Evaluation of the role of xanthine oxidase in myocardial reperfusion injury,” Journal of Biological Chemistry, vol. 265, no. 12, pp. 6656–6663, 1990. View at Google Scholar · View at Scopus
  49. A. Gámez, N. Alva, T. Roig, J. Bermúdez, and T. Carbonell, “Beneficial effects of fructose 1,6-biphosphate on hypothermia-induced reactive oxygen species injury in rats,” European Journal of Pharmacology, vol. 590, no. 1–3, pp. 115–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. V. V. Zinchuk, L. V. Dorokhina, and A. N. Maltsev, “Prooxidant-antioxidant balance in rats under hypothermia combined with modified hemoglobin-oxygen affinity,” Journal of Thermal Biology, vol. 27, no. 5, pp. 345–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Dede, Y. Deger, and I. Meral, “Effect of short-term hypothermia on lipid peroxidation and antioxidant enzyme activity in rats,” Journal of Veterinary Medicine Series A, vol. 49, no. 6, pp. 286–288, 2002. View at Google Scholar · View at Scopus
  52. M. Hasegawa, T. Ogihara, H. Tamai, and M. Hiroi, “Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state,” Brain Research, vol. 1283, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. Maier, G. H. Sun, D. Cheng, M. A. Yenari, P. H. Chan, and G. K. Steinberg, “Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia,” Neurobiology of Disease, vol. 11, no. 1, pp. 28–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Vairetti, A. Ferrigno, F. Carlucci et al., “Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase?” Liver Transplantation, vol. 15, no. 1, pp. 20–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Ferrigno, F. Carlucci, A. Tabucchi et al., “Different susceptibility of liver grafts from lean and obese Zucker rats to preservation injury,” Cryobiology, vol. 59, no. 3, pp. 327–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 4th edition, 2006.
  57. S. Gümüşlü, S. B. Sarikçioǧlu, E. Şahin, P. Yargiçoǧlu, and A. Aǧar, “Influences of different stress models of the antioxidant status and lipid peroxidation in rat erythrocytes,” Free Radical Research, vol. 36, no. 12, pp. 1277–1282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Marí, A. Morales, A. Colell, C. García-Ruiz, and J. C. Fernández-Checa, “Mitochondrial glutathione, a key survival antioxidant,” Antioxidants and Redox Signaling, vol. 11, no. 11, pp. 2685–2700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Zitta, P. Meybohm, B. Bein et al., “Hypoxia-induced cell damage is reduced by mild hypothermia and postconditioning with catalase in-vitro: application of an enzyme based oxygen deficiency system,” European Journal of Pharmacology, vol. 628, no. 1–3, pp. 11–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Tanaka, K. Ayajiki, H. Fujioka, N. Toda, and T. Okamura, “Protection by hypothermia of hypoxia-induced inhibition of neurogenic vasodilation in porcine cerebral arteries,” Journal of Pharmacological Sciences, vol. 92, no. 2, pp. 93–99, 2003. View at Google Scholar · View at Scopus
  61. T. D. J. M. G. Filho, T. B. de Mendonça, G. Gabiatti et al., “Topical hepatic hypothermia plus ischemic preconditioning. Analysis of bile flow and ischemic injuries after initial reperfusion in rats,” Acta Cirurgica Brasileira, vol. 26, no. 3, pp. 194–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Stefanutti, A. Pierro, S. Vinardi, L. Spitz, and S. Eaton, “Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury,” Shock, vol. 24, no. 2, pp. 159–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Todani, M. Fujita, R. Tsuruta et al., “Moderate hypothermia suppressed excessive generation of superoxide anion radical and inflammatory reactions in blood and liver in heatstroke: laboratory study in rats,” Free Radical Research, vol. 44, no. 4, pp. 462–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Hayashi, K. Osuka, Y. Watanabe, M. Yasuda, M. Takayasu, and T. Wakabayashi, “Hypothermia enhances the colocalization of calmodulin kinase IIα with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia,” Neuroscience Letters, vol. 505, no. 3, pp. 228–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. K. J. Brooks, I. Hargreaves, K. Bhakoo et al., “Delayed hypothermia prevents decreases in N-acetylaspartate and reduced glutathione in the cerebral cortex of the neonatal pig following transient hypoxia-ischaemia,” Neurochemical Research, vol. 27, no. 12, pp. 1599–1604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Karabiyikoglu, H. S. Han, M. A. Yenari, and G. K. Steinberg, “Attenuation of nitric oxide synthase isoform expression by mild hypothermia after focal cerebral ischemia: variations depending on timing of cooling,” Journal of Neurosurgery, vol. 98, no. 6, pp. 1271–1276, 2003. View at Google Scholar · View at Scopus
  67. H. A. Zar, K. Tanigawa, Y.-M. Kim, and J. R. Lancaster Jr., “Mild therapeutic hypothermia for postischemic vasoconstriction in the perfused rat liver,” Anesthesiology, vol. 90, no. 4, pp. 1103–1111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Bémeur, P. Desjardins, and R. F. Butterworth, “Antioxidant and anti-inflammatory effects of mild hypothermia in the attenuation of liver injury due to azoxymethane toxicity in the mouse,” Metabolic Brain Disease, vol. 25, no. 1, pp. 23–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Irani, “Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling,” Circulation Research, vol. 87, no. 3, pp. 179–183, 2000. View at Google Scholar · View at Scopus
  70. D. Medan, L. Wang, D. Toledo et al., “Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages,” Journal of Cellular Physiology, vol. 203, no. 1, pp. 78–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Wang, N. Azad, L. Kongkaneramit et al., “The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation,” Journal of Immunology, vol. 180, no. 5, pp. 3072–3080, 2008. View at Google Scholar · View at Scopus
  72. M. Jamal, A. Masood, R. Belcastro et al., “Mitochondria, oxygen free radicals, and apoptosis,” American Journal of Medical Genetics, vol. 106, no. 1, pp. 62–70, 2001. View at Google Scholar
  73. S. A. Susin, H. K. Lorenzo, N. Zamzami et al., “Molecular characterization of mitochodrial apoptosis-inducing factor,” Nature, vol. 397, no. 6718, pp. 441–446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. S. W. Ryter, P. K. Hong, A. Hoetzel et al., “Mechanisms of cell death in oxidative stress,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 49–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. G. Park, J. H. Kim, Y. Xia, and J.-H. Sung, “Generation of reactive oxygen species in adipose-derived stem cells: friend or foe?” Expert Opinion on Therapeutic Targets, vol. 15, no. 11, pp. 1297–1306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Afanas'ev, “ROS and RNS signaling in heart disorders: could antioxidant treatment be successful?” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 293769, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Diestel, C. Drescher, O. Miera, F. Berger, and K. R. L. Schmitt, “Hypothermia protects H9c2 cardiomyocytes from H2O2 induced apoptosis,” Cryobiology, vol. 62, no. 1, pp. 53–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. T. McManus, M. Sadgrove, A. K. Pringle, J. E. Chad, and L. E. Sundstrom, “Intraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal slices,” Journal of Neurochemistry, vol. 91, no. 2, pp. 327–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Schaller and R. Graf, “Cerebral ischemic preconditioning: an experimental phenomenon or a clinical important entity of stroke prevention?” Journal of Neurology, vol. 249, no. 11, pp. 1503–1511, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. N. N. Nassar, R. M. Abdelsalam, A. A. Abdel-Rahman, and D. M. Abdallah, “Possible involvement of oxidative stress and inflammatory mediators in the protective effects of the early preconditioning window against transient global ischemia in rats,” Neurochemical Research, vol. 37, no. 3, pp. 614–621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Lebuffe, P. T. Schumacker, Z.-H. Shao, T. Anderson, H. Iwase, and T. L. Vanden Hoek, “ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 284, no. 1, pp. H299–H308, 2003. View at Google Scholar · View at Scopus
  82. J. D. Thornton, G. S. Liu, R. A. Olsson, and J. M. Downey, “Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction,” Circulation, vol. 85, no. 2, pp. 659–665, 1992. View at Google Scholar · View at Scopus
  83. S. W. Ely and R. M. Berne, “Protective effects of adenosine in myocardial ischemia,” Circulation, vol. 85, no. 3, pp. 893–904, 1992. View at Google Scholar · View at Scopus
  84. G. L. Semenza, “Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning,” Biochimica et Biophysica Acta, vol. 1813, no. 7, pp. 1263–1268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Loor and P. T. Schumacker, “Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion,” Cell Death and Differentiation, vol. 15, no. 4, pp. 686–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Zaouali, I. Ben Mosbah, E. Boncompagni et al., “Hypoxia inducible factor-1α accumulation in steatotic liver preservation: role of nitric oxide,” World Journal of Gastroenterology, vol. 16, no. 28, pp. 3499–3509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. K. H. Polderman, “Application of therapeutic hypothermia in the intensive care unit: opportunities and pitfalls of a promising treatment modality—part 2: practical aspects and side effects,” Intensive Care Medicine, vol. 30, no. 5, pp. 757–769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Erecinska, M. Thoresen, and I. A. Silver, “Effects of hypothermia on energy metabolism in mammalian central nervous system,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 5, pp. 513–530, 2003. View at Google Scholar · View at Scopus
  89. H. Zhao, G. K. Steinberg, and R. M. Sapolsky, “General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 12, pp. 1879–1894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Eberspächer, C. Werner, K. Engelhard et al., “The effect of hypothermia on the expression of the apoptosis-regulating protein bax after incomplete cerebral ischemia and reperfusion in rats,” Journal of Neurosurgical Anesthesiology, vol. 15, no. 3, pp. 200–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Yang, S. Guo, T. Zhang, and H. Li, “Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling,” The FEBS Letters, vol. 583, no. 15, pp. 2500–2506, 2009. View at Publisher · View at Google Scholar · View at Scopus