Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 963217, 6 pages
http://dx.doi.org/10.1155/2013/963217
Review Article

Resveratrol: Why Is It a Promising Therapy for Chronic Kidney Disease Patients?

1Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niteroi, RJ, Brazil
2Clinical Nutrition Department, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
3Department of Renal Medicine K56, Huddinge University Hospital, Karolinska Institutet, 141 86 Stockholm, Sweden
4University Hospital Antonio Pedro, Medicine Faculty of Federal Fluminense University (UFF), Niteroi, RJ, Brazil

Received 13 June 2013; Revised 13 December 2013; Accepted 13 December 2013

Academic Editor: Ryuichi Morishita

Copyright © 2013 Juliana F. Saldanha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Shastri and M. J. Sarnak, “Cardiovascular disease and CKD: core curriculum 2010,” American Journal of Kidney Diseases, vol. 56, no. 2, pp. 399–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Stenvinkel, “Inflammation as a target for improving health in chronic kidney disease,” F1000 Medicine Reports, vol. 17, no. 1, Article ID M2-88, pp. 2–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Wratten, D. Galaris, C. Tetta, and A. Sevanian, “Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease,” Antioxidants and Redox Signaling, vol. 4, no. 6, pp. 935–944, 2002. View at Google Scholar · View at Scopus
  4. M. Kobayashi, H. Sugiyama, D.-H. Wang et al., “Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice,” Kidney International, vol. 68, no. 3, pp. 1018–1031, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Sener, K. Paskaloglu, H. Satiroglu, I. Alican, A. Kaçmaz, and A. Sakarcan, “l-Carnitine ameliorates oxidative damage due to chronic renal failure in rats,” Journal of Cardiovascular Pharmacology, vol. 43, no. 5, pp. 698–705, 2004. View at Publisher · View at Google Scholar
  6. G. J. Soleas, E. P. Diamandis, and D. M. Goldberg, “Resveratrol: a molecule whose time has come? And gone?” Clinical Biochemistry, vol. 30, no. 2, pp. 91–113, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Spanier, H. Xu, N. Xia et al., “Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4),” Journal of Physiology and Pharmacology, vol. 60, pp. 111–116, 2009. View at Google Scholar · View at Scopus
  8. P. Palsamy and S. Subramanian, “Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling,” Biochimica et Biophysica Acta, vol. 1812, no. 7, pp. 719–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Ghanim, C. L. Sia, S. Abuaysheh et al., “An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 9, pp. E1–E8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Himmelfarb, P. Stenvinkel, T. A. Ikizler, and R. M. Hakim, “Perspectives in renal medicine: the elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia,” Kidney International, vol. 62, no. 5, pp. 1524–1538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Locatelli, B. Canaud, K.-U. Eckardt, P. Stenvinkel, C. Wanner, and C. Zoccali, “Oxidative stress in end-stage renal disease: an emerging treat to patient outcome,” Nephrology Dialysis Transplantation, vol. 18, no. 7, pp. 1272–1280, 2003. View at Google Scholar · View at Scopus
  12. B. Descamps-Latscha, T. Drüeke, and V. Witko-Sarsat, “Dialysis-induced oxidative stress: biological aspects, clinical consequences, and therapy,” Seminars in Dialysis, vol. 14, no. 3, pp. 193–199, 2001. View at Google Scholar · View at Scopus
  13. C. L. Meuwese, P. Stenvinkel, F. W. Dekker, and J. J. Carrero, “Monitoring of inflammation in patients on dialysis: forewarned is forearmed,” Nature Reviews Nephrology, vol. 7, no. 3, pp. 166–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Carrero and P. Stenvinkel, “Inflammation in end-stage renal disease—what have we learned in 10 years?” Seminars in Dialysis, vol. 23, no. 5, pp. 498–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. N. D. Vaziri, “Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 13, no. 1, pp. 93–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Bonanni, I. Mannucci, D. Verzola et al., “Protein-energy wasting and mortality in chronic kidney disease,” International Journal of Environmental Research and Public Health, vol. 8, no. 5, pp. 1631–1654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kim, Y.-N. Cha, and Y.-J. Surh, “A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders,” Mutation Research, vol. 690, no. 1-2, pp. 12–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Hajra, A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky, “The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9052–9057, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Csiszar, M. Wang, E. G. Lakatta, and Z. Ungvari, “Inflammation and endothelial dysfunction during aging: Role of NF-κB,” Journal of Applied Physiology, vol. 105, no. 4, pp. 1333–1341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. S. Tilstra, A. R. Robinson, J. Wang et al. et al., “NF-κB inhibition delays DNA damade-induced senescence and aging in mice,” The Journal of Clinical Investigation, vol. 122, no. 7, pp. 2601–2612, 2012. View at Publisher · View at Google Scholar
  21. I. L. Noronha, C. K. Fujihara, and R. Zatz, “The inflammatory component in progressive renal disease—are interventions possible?” Nephrology Dialysis Transplantation, vol. 17, no. 3, pp. 363–368, 2002. View at Google Scholar · View at Scopus
  22. A. Kuhad and K. Chopra, “Attenuation of diabetic nephropathy by tocotrienol: involvement of NFκB signaling pathway,” Life Sciences, vol. 84, no. 9-10, pp. 296–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Manabe, “Chronic inflammation links cardiovascular, metabolic and renal diseases,” Circulation Journal, vol. 75, no. 12, pp. 2739–2748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Pedruzzi, M. B. Stockler-Pinto, M. Leite Jr., and D. Mafra, “Nrf2 keap-1 system versus NF-κB: the good and the evil in chronic kidney disease?” Biochimie, vol. 94, no. 12, pp. 2461–2466, 2012. View at Google Scholar
  25. K.-A. Jung and M.-K. Kwak, “The Nrf2 system as a potential target for the development of indirect antioxidants,” Molecules, vol. 15, no. 10, pp. 7266–7291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Singh, S. Vrishni, B. K. Singh, I. Rahman, and P. Kakkar, “Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases,” Free Radical Research, vol. 44, no. 11, pp. 1267–1288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Wang, L. Mao, L. Qiao, and X. Wang, “Disruption of Nrf2 enhances the upregulation of nuclear factor-κB activity, tumor necrosis factor-α, and matrix metalloproteinase-9 after spinal cord injury in mice,” Mediators of Inflammation, vol. 2010, Article ID 238321, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Domitrovic, H. Jakovac, V. Vasiljev Marchesi et al., “Differential hepatoprotective mechanisms of rutin and quercetin in CCI4-intoxicated BALB/cN mice,” Acta Pharmacologica Sinica, vol. 33, pp. 1260–1270, 2012. View at Google Scholar
  29. R. J. Thoppil, D. Bhatia, K. F. Barnes et al., “Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma,” Current Cancer Drug Targets, vol. 12, no. 9, pp. 1244–1257, 2012. View at Google Scholar
  30. Y. Wu and F. Liu, “Targeting mTOR: evaluating the therapeutic potential of resveratrol for cancer treatment,” Anti-Cancer Agents in Medicinal Chemistry, vol. 13, no. 7, pp. 1032–1038, 2012. View at Google Scholar
  31. M. J. Takaota, “The phenolic substances of white hellebore (Veratrum grandiflorum Loes. Fil.),” Journal of the Faculty of Science, Hokkaido Imperial University, vol. 3, pp. 1–16, 1940. View at Google Scholar
  32. E. H. Siemann and L. L. Creasy, “Concentration of the phytoalexin resveratrol in wine,” American Journal of Enology and Viticulture, vol. 43, pp. 49–52, 1992. View at Google Scholar
  33. B.-L. Liu, X. Zhang, W. Zhang, and H.-N. Zhen, “New enlightenment of French paradox: resveratrol's potential for cancer chemoprevention and anti-cancer therapy,” Cancer Biology and Therapy, vol. 6, no. 12, pp. 1833–1836, 2007. View at Google Scholar · View at Scopus
  34. S. Timmers, J. Auwerx, and P. Schrauwen, “The journey of resveratrol from yeast to human,” Aging, vol. 4, no. 3, pp. 146–158, 2012. View at Google Scholar
  35. B. Catalgol, S. Batirel, Y. Taga, and N. K. Ozer, “Resveratrol: french paradox revisited,” Frontiers in Pharmacology, vol. 3, pp. 1–18, 2012. View at Google Scholar
  36. H. Li and U. Fostermann, “Resveratrol: a multifunctional compound improving endothelial function,” Cardiovascular Drugs and Therapy, vol. 23, pp. 425–429, 2009. View at Google Scholar
  37. S. Timmers, E. Konings, L. Bilet et al., “Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans,” Cell Metabolism, vol. 14, no. 5, pp. 612–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Brasnyó, G. A. Molnár, M. Mohás et al., “Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients,” British Journal of Nutrition, vol. 106, no. 3, pp. 383–389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Zhu, Q. Liu, M. Wang et al., “Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts,” PloS ONE, vol. 6, no. 11, p. e27081, 2011. View at Google Scholar · View at Scopus
  40. H. Ghanim, C. L. Sia, K. Korzeniewski et al., “A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1409–1414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Yang, J. A. Baur, A. Chen, C. Miller, and D. A. Sinclair, “Design and synthesis of compounds that extend yeast replicative lifespan,” Aging Cell, vol. 6, no. 1, pp. 35–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. M. Wyke, S. T. Russell, and M. J. Tisdale, “Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation,” British Journal of Cancer, vol. 91, no. 9, pp. 1742–1750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C.-M. Hao and V. H. Haase, “Sirtuins and their relevance to the kidney,” Journal of the American Society of Nephrology, vol. 21, no. 10, pp. 1620–1627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Michishita, J. Y. Park, J. M. Burneskis, J. C. Barrett, and I. Horikawa, “Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins,” Molecular Biology of the Cell, vol. 16, no. 10, pp. 4623–4635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Y. Cohen, C. Miller, K. J. Bitterman et al., “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase,” Science, vol. 305, no. 5682, pp. 390–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver, “Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1,” Nature, vol. 434, no. 7029, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Xiao, S. Karnati, G. Qian et al. et al., “Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflamatory signaling pathways,” PLoS ONE, vol. 7, no. 7, Article ID e41097, 2012. View at Publisher · View at Google Scholar
  49. K. H. Chen, M. L. Cheng, Y. H. Jing, D. T. Y. Chiu, M. S. Shiao, and J. K. Chen, “Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats,” American Journal of Physiology, vol. 301, pp. E853–E863, 2011. View at Google Scholar
  50. M. Liu and F. Liu, “Resveratrol inhibits mTOR signaling by targeting DEPTOR,” Communicative and Integrative Biology, vol. 4, no. 4, pp. 382–384, 2011. View at Google Scholar · View at Scopus
  51. M. Liu, S. A. Wilk, A. Wang et al., “Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR,” The Journal of Biological Chemistry, vol. 285, no. 47, pp. 36387–36394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Q. Yang and K.-L. Guan, “Expanding mTOR signaling,” Cell Research, vol. 17, no. 8, pp. 666–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Laplante and D. M. Sabatini, “MTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Liang, S. Tian, J. Han, and P. Xiong, “Resveratrol as a therapeutic agent for renal fibrosis induced by unilateral ureteral obstruction,” Renal Failure. In press.
  56. P. Castilla, A. Dávalos, J. L. Teruel et al., “Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 1053–1061, 2008. View at Google Scholar · View at Scopus
  57. P. Castilla, R. Echarri, A. Dávalos et al., “Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 252–262, 2006. View at Google Scholar · View at Scopus