Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 971024, 10 pages
http://dx.doi.org/10.1155/2013/971024
Review Article

Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress

1Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Via del Policlinico 155, 00161 Rome, Italy
2Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
3Institute of Molecular Biology and Pathology (IBPM); CNR, Piazzale Aldo Moro 7, 00185 Rome, Italy

Received 10 June 2013; Revised 18 October 2013; Accepted 28 October 2013

Academic Editor: Peter Shaw

Copyright © 2013 Mario Arciello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Hepatitis C,” 2013, http://www.who.int/mediacentre/factsheets/fs164/en/.
  2. D. Lavanchy, “The global burden of hepatitis C,” Liver International, vol. 29, no. 1, pp. 74–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. R. Rosen and D. R. Gretch, “Hepatitis C virus: current understanding and prospects for future therapies,” Molecular Medicine Today, vol. 5, no. 9, pp. 393–399, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Bartenschlager, F. Penin, V. Lohmann, and P. André, “Assembly of infectious hepatitis C virus particles,” Trends in Microbiology, vol. 19, no. 2, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Farinati, R. Cardin, M. Bortolami et al., “Hepatitis C virus: from oxygen free radicals to hepatocellular carcinoma,” Journal of Viral Hepatitis, vol. 14, no. 12, pp. 821–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Arrese, A. Riquelme, and A. Soza, “Insulin resistance, hepatic steatosis and hepatitis C: a complex relationship with relevant clinical implications,” Annals of Hepatology, vol. 9, no. 1, pp. 112–118, 2010. View at Google Scholar · View at Scopus
  7. L. E. Adinolfi, L. Restivo, R. Zampino, A. Lonardo, and P. Loria, “Metabolic alterations and chronic hepatitis C: treatment strategies,” Expert Opinion on Pharmacotherapy, vol. 12, no. 14, pp. 2215–2234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-H. Guo, P.-C. Chen, K.-P. Lin, M.-Y. Shih, and W.-S. Ko, “Trace metal imbalance associated with oxidative stress and inflammatory status in anti-hepatitis C virus antibody positive subjects,” Environmental Toxicology and Pharmacology, vol. 33, no. 2, pp. 288–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rigoulet, E. D. Yoboue, and A. Devin, “Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 459–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Ryter, P. K. Hong, A. Hoetzel et al., “Mechanisms of cell death in oxidative stress,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 49–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-M. Go and D. P. Jones, “Redox compartmentalization in eukaryotic cells,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1273–1290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. S. R. de Mochel, S. Seronello, S. H. Wang et al., “Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection,” Hepatology, vol. 52, no. 1, pp. 47–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. G. Rhee, “H2O2, a necessary evil for cell signaling,” Science, vol. 312, no. 5782, pp. 1882–1883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Czaja, “Cell signaling in oxidative stress-induced liver injury,” Seminars in Liver Disease, vol. 27, no. 4, pp. 378–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Karbowski and R. J. Youle, “Dynamics of mitochondrial morphology in healthy cells and during apoptosis,” Cell Death and Differentiation, vol. 10, no. 8, pp. 870–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Fujinaga, T. Tsutsumi, H. Yotsuyanagi, K. Moriya, and K. Koike, “Hepatocarcinogenesis in hepatitis C: HCV shrewdly exacerbates oxidative stress by modulating both production and scavenging of reactive oxygen species,” Oncology, vol. 81, no. 1, pp. 11–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Mahmood, M. Kawanaka, A. Kamei et al., “Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C,” Antioxidants and Redox Signaling, vol. 6, no. 1, pp. 19–24, 2004. View at Google Scholar · View at Scopus
  19. M. Konishi, M. Iwasa, J. Araki et al., “Increased lipid peroxidation in patients with non-alcoholic fatty liver disease and chronic hepatitis C as measured by the plasma level of 8-isoprostane,” Journal of Gastroenterology and Hepatology, vol. 21, no. 12, pp. 1821–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Arciello, S. Petta, V. Leoni et al., “Inverse correlation between plasma oxysterol and LDL-cholesterol levels in hepatitis C virus-infected patients,” Digestive and Liver Disease, vol. 44, no. 3, pp. 245–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Anticoli, M. Arciello, A. Mancinetti et al., “7-Ketocholesterol and 5,6-secosterol modulate differently the stress-activated mitogen-activated protein kinases (MAPKs) in liver cells,” Journal of Cellular Physiology, vol. 222, no. 3, pp. 586–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. I. C. Gelissen, K.-A. Rye, A. J. Brown, R. T. Dean, and W. Jessup, “Oxysterol efflux from macrophage foam cells: the essential role of acceptor phospholipid,” Journal of Lipid Research, vol. 40, no. 9, pp. 1636–1646, 1999. View at Google Scholar · View at Scopus
  23. M. H. Faulds, C. Zhao, and K. Dahlman-Wright, “Molecular biology and functional genomics of liver X receptors (LXR) in relationship to metabolic diseases,” Current Opinion in Pharmacology, vol. 10, no. 6, pp. 692–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Koike and K. Moriya, “Metabolic aspects of hepatitis C viral infection: steatohepatitis resembling but distinct from NASH,” Journal of Gastroenterology, vol. 40, no. 4, pp. 329–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Yadav, H. I. Hertan, P. Schweitzer, E. P. Norkus, and C. S. Pitchumoni, “Serum and liver micronutrient antioxidants and serum oxidative stress in patients with chronic hepatitis C,” American Journal of Gastroenterology, vol. 97, no. 10, pp. 2634–2639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Fujita, R. Sugimoto, N. Ma et al., “Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C,” Journal of Viral Hepatitis, vol. 15, no. 7, pp. 498–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Kageyama, Y. Kobayashi, T. Kawasaki, S. Toyokuni, K. Uchida, and H. Nakamura, “Successful interferon therapy reverses enhanced hepatic iron accumulation and lipid peroxidation in chronic hepatitis C,” American Journal of Gastroenterology, vol. 95, no. 4, pp. 1041–1050, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Thorburn, G. Curry, R. Spooner et al., “The role of iron and haemochromatosis gene mutations in the progression of liver disease in chronic hepatitis C,” Gut, vol. 50, no. 2, pp. 248–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Hézode, C. Cazeneuve, O. Coué et al., “Liver iron accumulation in patients with chronic active hepatitis C: prevalence and role of hemochromatosis gene mutations and relationship with hepatic histological lesions,” Journal of Hepatology, vol. 31, no. 6, pp. 979–984, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Yuan and N. Kaplowitz, “Glutathione in liver diseases and hepatotoxicity,” Molecular Aspects of Medicine, vol. 30, no. 1-2, pp. 29–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Świȩtek and J. Juszczyk, “Reduced glutathione concentration in erythrocytes of patients with acute and chronic viral hepatitis,” Journal of Viral Hepatitis, vol. 4, no. 2, pp. 139–141, 1997. View at Google Scholar · View at Scopus
  32. G. Barbaro, G. D. Lorenzo, M. Ribersani et al., “Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype,” Journal of Hepatology, vol. 30, no. 5, pp. 774–782, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Capone, E. Guerriero, A. Sorice et al., “Characterization of metalloproteinases, oxidative status and inflammation levels in the different stages of fibrosis in HCV patients,” Clinical Biochemistry, vol. 45, no. 7-8, pp. 525–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Levent, A. Ali, A. Ahmet et al., “Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy,” Journal of Translational Medicine, vol. 4, article 25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Vendemiale, I. Grattagliano, P. Portincasa, G. Serviddio, G. Palasciamo, and E. Altomare, “Oxidative stress in symptom-free HCV carriers: relation with ALT flare-up,” European Journal of Clinical Investigation, vol. 31, no. 1, pp. 54–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. L. Diamond, J. M. Jacobs, B. Paeper et al., “Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction,” Hepatology, vol. 46, no. 3, pp. 649–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Sumida, T. Nakashima, T. Yoh et al., “Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection,” Journal of Hepatology, vol. 33, no. 4, pp. 616–622, 2000. View at Google Scholar · View at Scopus
  38. S. S. Bessa, E. M. Mohamed Ali, S. Abd El-Wahab Ael, and S. A. Nor El-Din, “Heme oxygenase-1 mRNA expression in egyptian patients with chronic liver disease,” Hepatitis Monthly, vol. 12, pp. 278–285, 2012. View at Google Scholar
  39. O. A. Smirnova, A. V. Ivanov, O. N. Ivanova, V. T. Valuev-Elliston, and S. N. Kochetkov, “Cell defense systems against oxidative stress and endoplasmic reticulum stress: mechanisms of regulation and the effect of hepatitis C virus,” Molecular Biology, vol. 45, no. 1, pp. 110–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Aleksunes and J. E. Manautou, “Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease,” Toxicologic Pathology, vol. 35, no. 4, pp. 459–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Burdette, M. Olivarez, and G. Waris, “Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway,” Journal of General Virology, vol. 91, no. 3, pp. 681–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. Goldenthal and J. Marín-García, “Mitochondrial signaling pathways: a receiver/integrator organelle,” Molecular and Cellular Biochemistry, vol. 262, no. 1-2, pp. 1–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. R. Duchen, “Roles of mitochondria in health and disease,” Diabetes, vol. 53, no. 1, pp. S96–S102, 2004. View at Google Scholar · View at Scopus
  44. G. Barbaro, G. Di Lorenzo, A. Asti et al., “Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings,” American Journal of Gastroenterology, vol. 94, no. 8, pp. 2198–2205, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. H. H. Yen, K. L. Shih, T. T. Lin, W. W. Su, M. S. Soon, and C. S. Liu, “Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C,” World Journal of Gastroenterology, vol. 18, no. 36, pp. 5084–5089, 2012. View at Google Scholar
  46. A. A. Rowland and G. K. Voeltz, “Endoplasmic reticulum-mitochondria contacts: function of the junction,” Nature Review Molecular Cell Biology, vol. 13, no. 10, pp. 607–625, 2012. View at Google Scholar
  47. K. W. Kinnally, P. M. Peixoto, S.-Y. Ryu, and L. M. Dejean, “Is mPTP the gatekeeper for necrosis, apoptosis, or both?” Biochimica et Biophysica Acta, vol. 1813, no. 4, pp. 616–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. E. Rusiñol, Z. Cui, M. H. Chen, and J. E. Vance, “A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins,” Journal of Biological Chemistry, vol. 269, no. 44, pp. 27494–27502, 1994. View at Google Scholar · View at Scopus
  49. C.-I. Popescu and J. Dubuisson, “Role of lipid metabolism in hepatitis C virus assembly and entry,” Biology of the Cell, vol. 102, no. 1, pp. 63–74, 2010. View at Google Scholar · View at Scopus
  50. M. Korenaga, T. Wang, Y. Li et al., “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37481–37488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Kasprzak, J. Seidel, W. Biczysko, J. Wysocki, R. Spachacz, and M. Zabel, “Intracellular localization of NS3 and C proteins in chronic hepatitis C,” Liver International, vol. 25, no. 4, pp. 896–903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. V. C. Chu, S. Bhattacharya, A. Nomoto et al., “Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells,” PLoS ONE, vol. 6, no. 12, Article ID e28551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Schwer, S. Ren, T. Pietschmann et al., “Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif,” Journal of Virology, vol. 78, no. 15, pp. 7958–7968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Suzuki, S. Sakamoto, T. Tsutsumi et al., “Molecular determinants for subcellular localization of hepatitis C virus core protein,” Journal of Virology, vol. 79, no. 2, pp. 1271–1281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Wang, R. V. Campbell, M. K. Yi, S. M. Lemon, and S. A. Weinman, “Role of hepatitis C virus core protein in viral-induced mitochondrial dysfunction,” Journal of Viral Hepatitis, vol. 17, no. 11, pp. 784–793, 2010. View at Google Scholar · View at Scopus
  56. B. Wölk, D. Sansonno, H.-G. Kräusslich et al., “Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines,” Journal of Virology, vol. 74, no. 5, pp. 2293–2304, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Griffin, D. Clarke, C. McCormick, D. Rowlands, and M. Harris, “Signal peptide cleavage and internal targeting signals direct the hepatitis C virus p7 protein to distinct intracellular membranes,” Journal of Virology, vol. 79, no. 24, pp. 15525–15536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Nomura-Takigawa, M. Nagano-Fujii, L. Deng et al., “Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis,” Journal of General Virology, vol. 87, no. 7, pp. 1935–1945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. Horner, H. M. Liu, H. S. Park, J. Briley, and M. Gale Jr., “Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 35, pp. 14590–14595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. H. F. Galley, “Bench-to-bedside review: targeting antioxidants to mitochondria in sepsis,” Critical Care, vol. 14, no. 4, article 230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Piccoli, R. Scrima, G. Quarato et al., “Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress,” Hepatology, vol. 46, no. 1, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Ando, M. Korenaga, K. Hino et al., “Mitochondrial electron transport inhibition in full genomic hepatitis C virus replicon cells is restored by reducing viral replication,” Liver International, vol. 28, no. 8, pp. 1158–1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Moriya, K. Nakagawa, T. Santa et al., “Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis,” Cancer Research, vol. 61, no. 11, pp. 4365–4370, 2001. View at Google Scholar · View at Scopus
  65. M. Y. Abdalla, I. M. Ahmad, D. R. Spitz, W. N. Schmidt, and B. E. Britigan, “Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses,” Journal of Medical Virology, vol. 76, no. 4, pp. 489–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. H. A. Sayed, A. El Ayyat, H. El Dusoki et al., “A cross sectional study of hepatitis B, C, some trace elements, heavy metals, aflatoxin B1 and schistosomiasis in a rural population, Egypt,” The Journal of the Egyptian Public Health Association, vol. 80, no. 3-4, pp. 355–388, 2005. View at Google Scholar · View at Scopus
  67. J. C. King, “Determinants of maternal zinc status during pregnancy,” American Journal of Clinical Nutrition, vol. 71, no. 5, 2000. View at Google Scholar · View at Scopus
  68. P. I. Oteiza, “Zinc and the modulation of redox homeostasis,” Free Radical Biology and Medicine, vol. 53, no. 9, pp. 1748–1759, 2012. View at Google Scholar
  69. G. A. Rutter, “Think zinc: new roles for zinc in the control of insulin secretion,” Islets, vol. 2, no. 1, pp. 49–50, 2010. View at Google Scholar · View at Scopus
  70. K. Jomova and M. Valko, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Moradpour and F. Penin, “Hepatitis C virus proteins: from structure to function,” Current Topics in Microbiology and Immunology, vol. 369, pp. 113–142, 2013. View at Google Scholar
  72. T. Himoto, N. Hosomi, S. Nakai et al., “Efficacy of zinc administration in patients with hepatitis C virus-related chronic liver disease,” Scandinavian Journal of Gastroenterology, vol. 42, no. 9, pp. 1078–1087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Murakami, T. Koyabu, A. Kawashima et al., “Zinc supplementation prevents the increase of transaminase in chronic hepatitis C patients during combination therapy with pegylated interferon α-2b and ribavirin,” Journal of Nutritional Science and Vitaminology, vol. 53, no. 3, pp. 213–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. A. S. Prasad, “Zinc: role in immunity, oxidative stress and chronic inflammation,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 12, no. 6, pp. 646–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Kanda, O. Yokosuka, K. Nagao, and H. Saisho, “State of hepatitis C viral replication enhances activation of NF-kB- and AP-1-signaling induced by hepatitis B virus X,” Cancer Letters, vol. 234, no. 2, pp. 143–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Matsuoka, H. Matsumura, H. Nakamura et al., “Zinc supplementation improves the outcome of chronic hepatitis C and liver cirrhosis,” Journal of Clinical Biochemistry and Nutrition, vol. 45, no. 3, pp. 292–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Matsumura, K. Nirei, H. Nakamura et al., “Zinc supplementation therapy improves the outcome of patients with chronic hepatitis C,” Journal of Clinical Biochemistry and Nutrition, vol. 51, no. 3, pp. 178–184, 2012. View at Google Scholar
  78. K. Yuasa, A. Naganuma, K. Sato et al., “Zinc is a negative regulator of hepatitis C virus RNA replication,” Liver International, vol. 26, no. 9, pp. 1111–1118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. G. J. Cooper, “Selective divalent copper chelation for the treatment of diabetes mellitus,” Current Medicinal Chemistry, vol. 19, no. 17, pp. 2828–2860, 2012. View at Google Scholar
  80. B. Li, Y. Tan, W. Sun, Y. Fu, L. Miao, and L. Cai, “The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy,” Toxicology Mechanisms and Methods, vol. 23, no. 1, pp. 27–33, 2013. View at Google Scholar
  81. C. H. Guo, P. C. Chen, and W. S. Ko, “Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease,” Internaional Journal of Medical Science, vol. 10, no. 6, pp. 730–737, 2013. View at Google Scholar
  82. W.-S. Ko, C.-H. Guo, M.-S. Yeh et al., “Blood micronutrient, oxidative stress, and viral load in patients with chronic hepatitis C,” World Journal of Gastroenterology, vol. 11, no. 30, pp. 4697–4702, 2005. View at Google Scholar · View at Scopus
  83. E. A. Roberts and M. L. Schilsky, “Diagnosis and treatment of Wilson disease: an update,” Hepatology, vol. 47, no. 6, pp. 2089–2111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. M. C. Linder, “The relationship of copper to DNA damage and damage prevention in humans,” Mutation Research, vol. 733, no. 1-2, pp. 83–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. D. Mattie and J. H. Freedman, “Copper-inducible transcription: regulation by metal- and oxidative stress-responsive pathways,” American Journal of Physiology, vol. 286, no. 2, pp. C293–C301, 2004. View at Google Scholar · View at Scopus
  86. R. P. Patel and V. M. Darley-Usmar, “Molecular mechanisms of the copper dependent oxidation of low-density lipoprotein,” Free Radical Research, vol. 30, no. 1, pp. 1–9, 1999. View at Google Scholar · View at Scopus
  87. M. Nakhjavani, A. Mashayekh, O. Khalilzadeh et al., “Oxidized low-density lipoprotein is associated with viral load and disease activity in patients with chronic hepatitis C,” Clinics and Research in Hepatology and Gastroenterology, vol. 35, no. 2, pp. 111–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Von Hahn, B. D. Lindenbach, A. Boullier et al., “Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells,” Hepatology, vol. 43, no. 5, pp. 932–942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Westhaus, D. Bankwitz, S. Ernst et al., “Characterization of the inhibition of hepatitis C virus entry by In vitro-generated and patient-derived oxidized low-density lipoprotein,” Hepatology, vol. 57, no. 5, pp. 1716–1724, 2013. View at Google Scholar
  90. R. J. Jones, S. J. Lewis, J. M. Smith, and J. Neuberger, “Undetectable serum caeruloplasmin in a woman with chronic hepatitis C infection,” Journal of Hepatology, vol. 32, no. 4, pp. 703–704, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Fillebeen, M. Muckenthaler, B. Andriopoulos et al., “Expression of the subgenomic hepatitis C virus replicon alters iron homeostasis in Huh7 cells,” Journal of Hepatology, vol. 47, no. 1, pp. 12–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Duygu, S. T. Koruk, H. Karsen, N. Aksoy, A. Taskin, and M. Hamidanoglu, “Prolidase and oxidative stress in chronic hepatitis C,” Journal of Clinical Laboratory Analysis, vol. 26, no. 4, pp. 232–237, 2012. View at Google Scholar
  93. G. J. Anderson and F. Wang, “Essential but toxic: controlling the flux of iron in the body,” Clinical and Experimental Pharmacology and Physiology, vol. 39, no. 8, pp. 719–724, 2012. View at Google Scholar
  94. D. N. Martin and S. L. Uprichard, “Identification of transferrin receptor 1 as a hepatitis C virus entry factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 26, pp. 10777–10782, 2013. View at Google Scholar
  95. R. J. Fontana, J. Israel, P. LeClair et al., “Iron reduction before and during interferon therapy of chronic hepatitis C: results of a multicenter, randomized, controlled trial,” Hepatology, vol. 31, no. 3, pp. 730–736, 2000. View at Google Scholar · View at Scopus
  96. H. Hofer, C. Österreicher, W. Jessner et al., “Hepatic iron concentration does not predict response to standard and pegylated-IFN/ribavirin therapy in patients with chronic hepatitis C,” Journal of Hepatology, vol. 40, no. 6, pp. 1018–1022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Yano, H. Hayashi, K. Yoshioka et al., “A significant reduction in serum alanine aminotransferase levels after 3-month iron reduction therapy for chronic hepatitis C: a multicenter, prospective, randomised, controlled trial in Japan,” Journal of Gastroenterology, vol. 39, no. 6, pp. 570–574, 2004. View at Google Scholar · View at Scopus
  98. N. Fujita, R. Sugimoto, N. Urawa et al., “Hepatic iron accumulation is associated with disease progression and resistance to interferon/ribavirin combination therapy in chronic hepatitis C,” Journal of Gastroenterology and Hepatology, vol. 22, no. 11, pp. 1886–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Lopez-Prieto, E. Gonzalez-Reimers, M. R. Aleman-Valls et al., “Iron and proinflammatory cytokines in chronic hepatitis C virus infection,” Biological Trace Element Research, vol. 155, no. 1, pp. 5–10, 2013. View at Google Scholar
  100. D. Trinder, O. T. Ayonrinde, and J. K. Olynyk, “HCV, iron, and oxidative stress: the new choreography of hepcidin,” Gastroenterology, vol. 134, no. 1, pp. 348–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Nishina, K. Hino, M. Korenaga et al., “Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription,” Gastroenterology, vol. 134, no. 1, pp. 226–238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Liu, T. L. Trinh, H. Dong, R. Keith, D. Nelson, and C. Liu, “Iron regulator hepcidin exhibits antiviral activity against hepatitis C virus,” PLoS ONE, vol. 7, no. 10, Article ID e46631, 2012. View at Google Scholar
  103. A. V. Ivanov, B. Bartosch, O. A. Smirnova, M. G. Isaguliants, and S. N. Kochetkov, “HCV and oxidative stress in the liver,” Viruses, vol. 5, no. 2, pp. 439–469, 2013. View at Google Scholar
  104. T. Furutani, K. Hino, M. Okuda et al., “Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein,” Gastroenterology, vol. 130, no. 7, pp. 2087–2098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. M. L.-H. Huang, D. J. R. Lane, and D. R. Richardson, “Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease,” Antioxidants and Redox Signaling, vol. 15, no. 12, pp. 3003–3019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. S. C. Leary, “Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad,” Antioxidants and Redox Signaling, vol. 13, no. 9, pp. 1403–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. M. Pawlotsky, “Treatment of chronic hepatitis C: current and future,” Current Topics in Microbiology and Immunology, vol. 369, pp. 321–342, 2013. View at Google Scholar
  108. L. C. Casey and W. M. Lee, “Hepatitis C virus therapy update 2013,” Current Opinion in Gastroenterology, vol. 29, no. 3, pp. 243–249, 2013. View at Google Scholar
  109. S. Seronello, J. Montanez, K. Presleigh, M. Barlow, S. B. Park, and J. Choi, “Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals,” PLoS ONE, vol. 6, no. 11, Article ID e27436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. R. A. J. Smith, C. M. Porteous, A. M. Gane, and M. P. Murphy, “Delivery of bioactive molecules to mitochondria in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5407–5412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. M. P. Murphy and R. A. J. Smith, “Targeting antioxidants to mitochondria by conjugation to lipophilic cations,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 629–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. M. L. Jauslin, T. Meier, R. A. J. Smith, and M. P. Murphy, “Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants,” FASEB Journal, vol. 17, pp. 1972–1974, 2003. View at Google Scholar
  113. E. J. Gane, F. Weilert, D. W. Orr et al., “The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients,” Liver International, vol. 30, no. 7, pp. 1019–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. P. A. Gallay, “Cyclophilin Inhibitors,” Clinics in Liver Disease, vol. 13, no. 3, pp. 403–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Paeshuyse, A. Kaul, E. De Clercq et al., “The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro,” Hepatology, vol. 43, no. 4, pp. 761–770, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Crabbé, G. Vuagniaux, J.-M. Dumont, V. Nicolas-Métral, J. Marfurt, and L. Novaroli, “An evaluation of the cyclophilin inhibitor Debio 025 and its potential as a treatment for chronic hepatitis C,” Expert Opinion on Investigational Drugs, vol. 18, no. 2, pp. 211–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. L. Coelmont, S. Kaptein, J. Paeshuyse et al., “Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 3, pp. 967–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. P. A. Gallay and K. Lin, “Profile of alisporivir and its potential in the treatment of hepatitis C,” Journal of Drug Design, Development and Therapy, vol. 7, pp. 105–115, 2013. View at Google Scholar
  119. G. Quarato, A. D'Aprile, B. Gavillet et al., “The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction,” Hepatology, vol. 55, no. 5, pp. 1333–1343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Grüngreiff and D. Reinhold, “Zinc: a complementary factor in the treatment of chronic hepatitis C? (Review),” Molecular Medicine Reports, vol. 3, no. 3, pp. 371–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Fargion, A. Ludovica Fracanzani, M. Sampietro et al., “Liver iron influences the response to interferon alpha therapy in chronic hepatitis C,” European Journal of Gastroenterology and Hepatology, vol. 9, no. 5, pp. 497–503, 1997. View at Google Scholar · View at Scopus
  122. N. Calland, J. Dubuisson, Y. Rouille, and K. Seron, “Hepatitis C virus and natural compounds: a new antiviral approach?” Viruses, vol. 4, no. 10, pp. 2197–2217, 2012. View at Google Scholar
  123. M. Zatloukalová, V. Křen, R. Gažák et al., “Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II),” Bioelectrochemistry, vol. 82, no. 2, pp. 117–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. L. Rossi, S. Mazzitelli, M. Arciello, C. R. Capo, and G. Rotilio, “Benefits from dietary polyphenols for brain aging and Alzheimer's disease,” Neurochemical Research, vol. 33, no. 12, pp. 2390–2400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. D. S. Han, B. Hahm, H.-M. Rho, and S. K. Jang, “Identification of the protease domain in NS3 of hepatitis C virus,” Journal of General Virology, vol. 76, no. 4, pp. 985–993, 1995. View at Google Scholar · View at Scopus
  126. G. Bartolomei, R. E. Cevik, and A. Marcello, “Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes,” Journal of General Virology, vol. 92, no. 9, pp. 2072–2081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Choi, “Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations,” Free Radical Biology and Medicine, vol. 52, no. 7, pp. 1135–1150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. N. R. Perron, C. R. García, J. R. Pinzón, M. N. Chaur, and J. L. Brumaghim, “Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage,” Journal of Inorganic Biochemistry, vol. 105, no. 5, pp. 745–753, 2011. View at Publisher · View at Google Scholar · View at Scopus