Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2014 (2014), Article ID 485604, 9 pages
http://dx.doi.org/10.1155/2014/485604
Research Article

Lipoxygenase Pathway Mediates Increases of Airway Resistance and Lung Inflation Induced by Exposure to Nanotitanium Dioxide in Rats

1Department of Nursing, St. Mary’s Medicine Nursing and Management College, Yilan County 266, Taiwan
2Department of Emergency and Critical Care, Cheng-Hsin General Hospital, Taipei 112, Taiwan
3Department of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
4Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu-Ho-Su Memorial Hospital, Taipei 11101, Taiwan
5Division of Thoracic Surgery, Department of Surgery, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan
6Department of Pathology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan

Received 13 October 2013; Revised 12 December 2013; Accepted 16 December 2013; Published 17 February 2014

Academic Editor: Felipe Dal-Pizzol

Copyright © 2014 Jyu-Feng Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Seipenbusch, A. Binder, and G. Kasper, “Temporal evolution of nanoparticle aerosols in workplace exposure,” Annals of Occupational Hygiene, vol. 52, no. 8, pp. 707–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-M. Liao, Y.-H. Chiang, and C.-P. Chio, “Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 57–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Y. Ma, R. R. Mercer, M. Barger et al., “Induction of pulmonary fibrosis by cerium oxide nanoparticles,” Toxicology and Applied Pharmacology, vol. 262, no. 3, pp. 255–264, 2012. View at Publisher · View at Google Scholar
  4. S. Hussain, J. A. J. Vanoirbeek, K. Luyts et al., “Lung exposure to nanoparticles modulates an asthmatic response in a mouse model,” The European Respiratory Journal, vol. 37, no. 2, pp. 299–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H.-W. Chen, S.-F. Su, C.-T. Chien et al., “Titanium dioxide nanoparticles induce emphysema-like lung injury in mice,” The FASEB Journal, vol. 20, no. 13, pp. 2393–2395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. M. Rossi, L. Pylkkänen, A. J. Koivisto et al., “Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model,” Particle and Fibre Toxicology, vol. 7, article 35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Chen, X. Dong, J. Zhao, and G. Tang, “In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection,” Journal of Applied Toxicology, vol. 29, no. 4, pp. 330–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Reynolds, V. J. Johnson, and D. G. Frazer, “Unrestrained acoustic plethysmograph for measuring specific airway resistance in mice,” Journal of Applied Physiology, vol. 105, no. 2, pp. 711–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-F. Chen, D. Wang, C. P. H. Chie Ping Hwang et al., “The protective effect of niacinamide on ischemia-reperfusion-induced liver injury,” Journal of Biomedical Science, vol. 8, no. 6, pp. 446–452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Zhang, Y. Kusaka, K. Sato, K. Nakakuki, N. Kohyama, and K. Donaldson, “Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals,” Journal of Toxicology and Environmental Health A, vol. 53, no. 6, pp. 423–438, 1998. View at Google Scholar · View at Scopus
  12. F. Afaq, P. Abidi, R. Matin, and Q. Rahman, “Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide,” Journal of Applied Toxicology, vol. 18, no. 5, pp. 307–312, 1998. View at Google Scholar
  13. G. Oberdörster, J. N. Finkelstein, C. Johnston et al., “Acute pulmonary effects of ultrafine particles in rats and mice,” Research Report, no. 96, pp. 5–86, 2000. View at Google Scholar · View at Scopus
  14. L. C. Renwick, D. Brown, A. Clouter, and K. Donaldson, “Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types,” Occupational and Environmental Medicine, vol. 61, no. 5, pp. 442–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, “Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties,” Toxicology, vol. 230, no. 1, pp. 90–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Höhr, Y. Steinfartz, R. P. F. Schins et al., “The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat,” International Journal of Hygiene and Environmental Health, vol. 205, no. 3, pp. 239–244, 2002. View at Google Scholar · View at Scopus
  17. G. Oberdorster, J. Ferin, and B. E. Lehnert, “Correlation between particle size, in vivo particle persistence, and lung injury,” Environmental Health Perspectives, vol. 102, no. 5, pp. 173–179, 1994. View at Google Scholar · View at Scopus
  18. T. M. Sager, C. Kommineni, and V. Castranova, “Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area,” Particle and Fibre Toxicology, vol. 5, article 17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Müller, M. Riediker, P. Wick, M. Mohr, P. Gehr, and B. Rothen-Rutishauser, “Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways,” Journal of the Royal Society Interface, vol. 7, no. 1, pp. S27–S40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. M. Brown, K. Donaldson, P. J. Borm et al., “Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles,” American Journal of Physiology, vol. 286, no. 2, pp. L344–L353, 2004. View at Google Scholar · View at Scopus
  21. N. Li, C. Sioutas, A. Cho et al., “Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage,” Environmental Health Perspectives, vol. 111, no. 4, pp. 455–460, 2003. View at Google Scholar · View at Scopus
  22. E. Bermudez, J. B. Mangum, B. A. Wong et al., “Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles,” Toxicological Sciences, vol. 77, no. 2, pp. 347–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Kobayashi, M. Naya, S. Endoh, J. Maru, K. Yamamoto, and J. Nakanishi, “Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results,” Toxicology, vol. 264, no. 1-2, pp. 110–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Nemmar, K. Melghit, and B. H. Ali, “The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats,” Experimental Biology and Medicine, vol. 233, no. 5, pp. 610–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Liu, X. Zhang, Y. Pu et al., “Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 8, pp. 5161–5169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Beck-Speier, N. Dayal, E. Karg et al., “Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages,” Environmental Health Perspectives, vol. 109, no. 4, pp. 613–618, 2001. View at Google Scholar · View at Scopus
  27. J. Tardif, P. Borgeat, and M. Laviolette, “Inhibition of human alveolar macrophage production of leukotriene B4 by acute in vitro and in vivo exposure to tobacco smoke,” American Journal of Respiratory Cell and Molecular Biology, vol. 2, no. 2, pp. 155–161, 1990. View at Google Scholar · View at Scopus
  28. S. Hammarstrom, “Leukotrienes,” Annual Review of Biochemistry, vol. 52, pp. 355–377, 1983. View at Google Scholar · View at Scopus
  29. E. Hernandez-Alvidrez, G. Alba-Reyes, B. C. Munoz-Cedillo et al., “Passive smoking induces leukotriene production in children: influence of asthma,” The Journal of Asthma, vol. 50, no. 4, pp. 347–353, 2013. View at Google Scholar
  30. E. S. Papierniak, D. T. Lowenthal, and E. Harman, “Novel therapies in asthma: leukotriene antagonists, biologic agents, and beyond,” American Journal of Therapeutics, vol. 20, no. 1, pp. 79–103, 2013. View at Google Scholar
  31. M. Scuri, B. T. Chen, V. Castranova et al., “Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways,” Journal of Toxicology and Environmental Health A, vol. 73, no. 20, pp. 1353–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus