Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2014, Article ID 765832, 9 pages
http://dx.doi.org/10.1155/2014/765832
Review Article

Resveratrol Oligomers for the Prevention and Treatment of Cancers

1Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510630, China
2Department of Urology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
3Chemical Biology Center, Lishui Institute of Agricultural Sciences, Lishui, Zhejiang 32300, China

Received 15 January 2014; Accepted 12 February 2014; Published 23 March 2014

Academic Editor: Xiaoqian Chen

Copyright © 2014 You-Qiu Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. West, M. L. Slattery, L. M. Robison et al., “Dietary intake and colon cancer: sex- and anatomic site-specific associations,” American Journal of Epidemiology, vol. 130, no. 5, pp. 883–894, 1989. View at Google Scholar · View at Scopus
  2. D. W. West, M. L. Slattery, L. M. Robison, T. K. French, and A. W. Mahoney, “Adult dietary intake and prostate cancer risk in Utah: a case-control study with special emphasis on aggressive tumors,” Cancer Causes and Control, vol. 2, no. 2, pp. 85–94, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. G. R. Howe, E. Benito, R. Castelleto et al., “Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies,” Journal of the National Cancer Institute, vol. 84, no. 24, pp. 1887–1896, 1992. View at Google Scholar · View at Scopus
  4. M. S. Donaldson, “Nutrition and cancer: a review of the evidence for an anti-cancer diet,” Nutrition Journal, vol. 3, article 19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Fresco, F. Borges, C. Diniz, and M. P. M. Marques, “New insights on the anticancer properties of dietary polyphenols,” Medicinal Research Reviews, vol. 26, no. 6, pp. 747–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Takaoka, “The phenolic substances of white hellebore (Veratrum Grandiflorum Loes fil.) II,” Nippon Kagaku Kaishi, vol. 60, no. 12, pp. 1261–1264, 1939. View at Google Scholar
  7. K. P. L. Bhat and J. M. Pezzuto, “Cancer chemopreventive activity of resveratrol,” Annals of the New York Academy of Sciences, vol. 957, pp. 210–229, 2002. View at Google Scholar · View at Scopus
  8. M. Jang, L. Cai, G. O. Udeani et al., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, vol. 275, no. 5297, pp. 218–220, 1997. View at Google Scholar · View at Scopus
  9. J. Burns, T. Yokota, H. Ashihara, M. E. J. Lean, and A. Crozier, “Plant foods and herbal sources of resveratrol,” Journal of Agricultural and Food Chemistry, vol. 50, no. 11, pp. 3337–3340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. B. Harikumar and B. B. Aggarwal, “Resveratrol: a multitargeted agent for age-associated chronic diseases,” Cell Cycle, vol. 7, no. 8, pp. 1020–1037, 2008. View at Google Scholar · View at Scopus
  11. P. Kovacic and R. Somanathan, “Multifaceted approach to resveratrol bioactivity: focus on antioxidant action, cell signaling and safety,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 2, pp. 86–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Rege, S. Kumar, D. N. Wilson et al., “Resveratrol protects the brain of obese mice from oxidative damage,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 419092, 7 pages, 2013. View at Publisher · View at Google Scholar
  13. C. D. Venturini, S. Merlo, A. A. Souto, M. D. C. Fernandes, R. Gomez, and C. R. Rhoden, “Resveratrol and red wine function as antioxidants in the nervous system without cellular proliferative effects during experimental diabetes,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 6, pp. 434–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Dong, “Molecular mechanism of the chemopreventive effect of resveratrol,” Mutation Research, vol. 523-524, pp. 145–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Athar, J. H. Back, X. Tang et al., “Resveratrol: a review of preclinical studies for human cancer prevention,” Toxicology and Applied Pharmacology, vol. 224, no. 3, pp. 274–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Juan, M. Pilar Vinardell, and J. M. Planas, “The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful,” Journal of Nutrition, vol. 132, no. 2, pp. 257–260, 2002. View at Google Scholar · View at Scopus
  18. D. Mikulski and M. Molski, “Quantitative structure-antioxidant activity relationship of trans-resveratrol oligomers, trans-4,4′-dihydroxystilbene dimer, trans-resveratrol-3-O-glucuronide, glucosides: Trans-piceid, cis-piceid, trans-astringin and trans-resveratrol-4′-O-β-D-glucopyranoside,” European Journal of Medicinal Chemistry, vol. 45, no. 6, pp. 2366–2380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. H. Cichewicz and S. A. Kouzi, “Resveratrol oligomers: structure, chemistry, and biological activity,” Studies in Natural Products Chemistry, vol. 26, pp. 507–579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Lins, M. N. D. S. Ribeiro, O. R. Gottlieb, and H. E. Gottlieb, “Gnetins: resveratrol oligomers from Gnetum species,” Journal of Natural Products, vol. 45, no. 6, pp. 754–761, 1982. View at Google Scholar · View at Scopus
  21. S. Sotheeswaran and V. Pasupathy, “Distribution of resveratrol oligomers in plants,” Phytochemistry, vol. 32, no. 5, pp. 1083–1092, 1993. View at Google Scholar · View at Scopus
  22. T. Ito, T. Tanaka, M. Iinuma et al., “New resveratrol oligomers in the stem bark of Vatica pauciflora,” Tetrahedron, vol. 59, no. 28, pp. 5347–5363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Abe, T. Ito, K. Ohguchi et al., “Resveratrol oligomers from Vatica albiramis,” Journal of Natural Products, vol. 73, no. 9, pp. 1499–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Li, G. E. Henry, and N. P. Seeram, “Identification and bioactivities of resveratrol oligomers and flavonoids from carex folliculata Seeds,” Journal of Agricultural and Food Chemistry, vol. 57, no. 16, pp. 7282–7287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Z. W. M. Zain, N. Ahmat, N. H. Norizan, and N. A. A. M. Nazri, “The evaluation of antioxidant, antibacterial and structural identification activity of trimer resveratrol from Malaysia's dipterocarpaceae,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 5, pp. 926–929, 2011. View at Google Scholar · View at Scopus
  26. A. González-Sarrías, S. Gromek, D. Niesen, N. P. Seeram, and G. E. Henry, “Resveratrol oligomers isolated from carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest,” Journal of Agricultural and Food Chemistry, vol. 59, no. 16, pp. 8632–8638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Quiney, C. Billard, A. M. Faussat et al., “Pro-apoptotic properties of hyperforin in leukemic cells from patients with B-cell chronic lymphocytic leukemia,” Leukemia, vol. 20, no. 3, pp. 491–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Barjot, M. Tournaire, C. Castagnino, C. Vigor, J. Vercauteren, and J.-F. Rossi, “Evaluation of antitumor effects of two vine stalk oligomers of resveratrol on a panel of lymphoid and myeloid cell lines: comparison with resveratrol,” Life Sciences, vol. 81, no. 23-24, pp. 1565–1574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Vitrac, A. Bornet, R. Vanderlinde et al., “Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian wines,” Journal of Agricultural and Food Chemistry, vol. 53, no. 14, pp. 5664–5669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Xu, L. P. Zhang, L. F. Chen, and C. Q. Hu, “Inhibition of protein kinase C by stilbenoids,” Acta Pharmaceutica Sinica, vol. 29, no. 11, pp. 818–822, 1994. View at Google Scholar · View at Scopus
  31. T. Shen, X.-N. Wang, and H.-X. Lou, “Natural stilbenes: an overview,” Natural Product Reports, vol. 26, no. 7, pp. 916–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Muhtadi, E. H. Hakim, L. D. Juliawaty et al., “Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii,” Fitoterapia, vol. 77, no. 7-8, pp. 550–555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ito, Y. Akao, T. Tanaka, M. Iinuma, and Y. Nozawa, “Vaticanol C, a novel resveratrol tetramer, inhibits cell growth through induction of apoptosis in colon cancer cell lines,” Biological & pharmaceutical bulletin, vol. 25, no. 1, pp. 147–148, 2002. View at Google Scholar · View at Scopus
  34. T. A. Zykova, F. Zhu, X. Zhai et al., “Resveratrol directly targets COX-2 to inhibit carcinogenesis,” Molecular Carcinogenesis, vol. 47, no. 10, pp. 797–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M.-A. Shibata, Y. Akao, E. Shibata et al., “Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 5, pp. 681–691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Tsukamoto, R. Nakata, E. Tamura et al., “Vaticanol C, a resveratrol tetramer, activates PPAR and PPARβ/δ in vitro and in vivo,” Nutrition and Metabolism, vol. 7, article 46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K.-S. Huang, M. Lin, and G.-F. Cheng, “Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes,” Phytochemistry, vol. 58, no. 2, pp. 357–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Privat, J. P. Telo, V. Bernardes-Genisson, A. Vieira, J.-P. Souchard, and F. Nepveu, “Antioxidant properties of trans-ε-Viniferin as compared to stilbene derivatives in aqueous and nonaqueous media,” Journal of Agricultural and Food Chemistry, vol. 50, no. 5, pp. 1213–1217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Piver, F. Berthou, Y. Dreano, and D. Lucas, “Differential inhibition of human cytochrome P450 enzymes by ε-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages,” Life Sciences, vol. 73, no. 9, pp. 1199–1213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Yáñez, N. Fraiz, E. Cano, and F. Orallo, “(-)-Trans-ε-viniferin, a polyphenol present in wines, is an inhibitor of noradrenaline and 5-hydroxytryptamine uptake and of monoamine oxidase activity,” European Journal of Pharmacology, vol. 542, no. 1-3, pp. 54–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. K. Hyo, J. C. Eun, J. B. Song et al., “Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora,” Archives of Pharmacal Research, vol. 25, no. 3, pp. 293–299, 2002. View at Google Scholar · View at Scopus
  42. S. Rohaiza, W. A. Yaacob, L. B. Din, and I. Nazlina, “Cytotoxic oligostilbenes from shorea hopeifolia,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 10, pp. 1272–1277, 2011. View at Google Scholar · View at Scopus
  43. S. Mishima, K. Matsumoto, Y. Futamura et al., “Antitumor effect of stilbenoids from Vateria indica against allografted sarcoma S-180 in animal model,” Journal of Experimental Therapeutics and Oncology, vol. 3, no. 5, pp. 283–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Quiney, D. Dauzonne, C. Kern et al., “Flavones and polyphenols inhibit the NO pathway during apoptosis of leukemia B-cells,” Leukemia Research, vol. 28, no. 8, pp. 851–861, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ohyama, T. Tanaka, T. Ito, M. Iinuma, K. F. Bastow, and K.-H. Lee, “Antitumor agents 200. Cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 20, pp. 3057–3060, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Zhi and X. Guang, “Growth inhibitory effect of stilbenoids on lung cancer lines,” Acta Academiae Medicinae Sinicae, vol. 25, pp. 327–330, 1998. View at Google Scholar
  47. S. Atun, R. A. Nurfina, and M. Niwa, “Balanocarpol and Heimiol A, two resveratrol dimers from stem bark Hopea mengarawan (Dipterocarpaceae), Indo,” Indonesian Journal of Chemistry, vol. 6, no. 1, pp. 75–78, 2006. View at Google Scholar
  48. S. Atun, R. A. Nurfina, and M. Niwa, “Balanocarpol and ampelopsin H, two resveratrol dimers from stem bark Hopea mengarawan (Dipterocarpaceae),” Indonesian Journal of Chemistry, vol. 6, no. 3, pp. 307–311, 2006. View at Google Scholar
  49. K. Ohguchi, T. Tanaka, T. Ito et al., “Inhibitory effects of resveratrol derivatives from dipterocarpaceae plants on tyrosinase activity,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 7, pp. 1587–1589, 2003. View at Google Scholar · View at Scopus
  50. S.-H. Lee, N.-H. Shin, S.-H. Kang et al., “α-Viniferin: a prostaglandin H2 synthase inhibitor from root of Carex humilis,” Planta Medica, vol. 64, no. 3, pp. 204–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. S. H. Sung, S. Y. Kang, K. Y. Lee et al., “(+)-Alpha-viniferin, a stilbene trimer from Caragana chamlague, inhibits acetylcholinesterase,” Biological & pharmaceutical bulletin, vol. 25, no. 1, pp. 125–127, 2002. View at Google Scholar · View at Scopus
  52. M. Bobrowska-Hägerstrand, M. Lillås, L. Mrówczyñska et al., “Resveratrol oligomers are potent MRP1 transport inhibitors,” Anticancer Research, vol. 26, no. 3 A, pp. 2081–2084, 2006. View at Google Scholar · View at Scopus
  53. A. Wibowo, N. Ahmat, A. S. Hamzah et al., “Malaysianol A, a new trimer resveratrol oligomer from the stem bark of Dryobalanops aromatica,” Fitoterapia, vol. 82, no. 4, pp. 676–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Chowdhury, K. Kishino, R. Satoh et al., “Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids,” Anticancer Research, vol. 25, no. 3 B, pp. 2055–2063, 2005. View at Google Scholar · View at Scopus
  55. S. Zhi, T. Chunyan, W. Yuxiong, H. Hong, and X. Guang, “Effects of miyabenol-C on protein kinase-C in two lung carcinoma cell lines,” Chinese Medical Journal, vol. 6, p. 001, 1999. View at Google Scholar
  56. T. Ito, Y. Akao, H. Yi et al., “Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C,” Carcinogenesis, vol. 24, no. 9, pp. 1489–1497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. H. A. Guebailia, K. Chira, T. Richard et al., “Hopeaphenol: the first resveratrol tetramer in wines from North Africa,” Journal of Agricultural and Food Chemistry, vol. 54, no. 25, pp. 9559–9564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. Zgoda-Pols, A. J. Freyer, L. B. Killmer, and J. R. Porter, “Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. oblongifolia,” Journal of Natural Products, vol. 65, no. 11, pp. 1554–1559, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. A. E. A. Bala, A. Kollmann, P.-H. Ducrot et al., “Cis ε-viniferin: a new antifungal resveratrol dehydrodimer from Cyphostemma crotalarioides roots,” Journal of Phytopathology, vol. 148, no. 1, pp. 29–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Colin, A. Lancon, D. Delmas et al., “Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses,” Biochimie, vol. 90, no. 11-12, pp. 1674–1684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. H. J. Kim, E. J. Chang, S. H. Cho, S. K. Chung, H. D. Park, and S. W. Choi, “Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 9, pp. 1990–1993, 2002. View at Google Scholar · View at Scopus
  62. D. Colin, A. Gimazane, G. Lizard et al., “Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells,” International Journal of Cancer, vol. 124, no. 12, pp. 2780–2788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A.-K. Marel, G. Lizard, J.-C. Izard, N. Latruffe, and D. Delmas, “Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells,” Molecular Nutrition and Food Research, vol. 52, no. 5, pp. 538–548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Vingtdeux, U. Dreses-Werringloer, H. Zhao, P. Davies, and P. Marambaud, “Therapeutic potential of resveratrol in Alzheimer's disease,” BMC Neuroscience, vol. 9, no. supplement 2, p. S6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. A. Khan, S. G. Nabi, S. Prakash, and A. Zaman, “Pallidol, a resveratrol dimer from Cissus pallida,” Phytochemistry, vol. 25, no. 8, pp. 1945–1948, 1986. View at Google Scholar · View at Scopus
  66. H. J. Kim, M. Saleem, S. H. Seo, C. Jin, and Y. S. Lee, “Two new antioxidant stilbene dimers, parthenostilbenins A and B from Parthenocissus tricuspidata,” Planta Medica, vol. 71, no. 10, pp. 973–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Marx, “Oxygen free radicals linked to many diseases,” Science, vol. 235, no. 4788, pp. 529–531, 1987. View at Google Scholar · View at Scopus
  68. S. He, L. Jiang, B. Wu, Y. Pan, and C. Sun, “Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 283–287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Hofer, C. Badouard, E. Bajak, J.-L. Ravanat, Å. Mattsson, and I. A. Cotgreave, “Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA,” Biological Chemistry, vol. 386, no. 4, pp. 333–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. D. H. Kim, S.-H. Kim, H. J. Kim, C. Jin, K. C. Chung, and H. Rhim, “Stilbene derivatives as human 5-HT6 receptor antagonists from the root of Caragana sinica,” Biological and Pharmaceutical Bulletin, vol. 33, no. 12, pp. 2024–2028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Sahidin, E. H. Hakim, L. D. Juliawaty et al., “Cytotoxic properties of oligostilbenoids from the tree barks of Hopea dryobalanoides,” Zeitschrift fur Naturforschung C Journal of Biosciences, vol. 60, no. 9-10, pp. 723–727, 2005. View at Google Scholar · View at Scopus
  72. K. G. Lim, A. I. Gray, S. Pyne, and N. J. Pyne, “Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival,” British Journal of Pharmacology, vol. 166, no. 5, pp. 1605–1616, 2012. View at Google Scholar
  73. P. Kulanthaivel, W. P. Janzen, L. M. Ballas et al., “Naturally occurring protein kinase C inhibitors; II. Isolation of oligomeric stilbenes from Caragana sinica,” Planta Medica, vol. 61, no. 1, pp. 41–44, 1995. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Y. Chung, B. H. Kim, M. K. Lee et al., “Anti-inflammatory effect of the oligomeric stilbene α-viniferin and its mode of the action through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase,” Planta Medica, vol. 69, no. 8, pp. 710–714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Y. Chung, E. Roh, J.-A. Kwak et al., “α-Viniferin suppresses the signal transducer and activation of transcription-1 (stat-1)-inducible inflammatory genes in interferon-γ-stimulated macrophages,” Journal of Pharmacological Sciences, vol. 112, no. 4, pp. 405–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Ohguchi, Y. Akao, K. Matsumoto et al., “Vaticanol C-induced cell death is associated with inhibition of pro-survival signaling in HL60 human leukemia cell line,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 2, pp. 353–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. D. A. Martin, R. M. Siegel, L. Zheng, and M. J. Lenardo, “Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal,” The Journal of Biological Chemistry, vol. 273, no. 8, pp. 4345–4349, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. C.-Y. Tian, C.-Q. Hu, G. Xu, and H.-Y. Song, “Assessment of estrogenic activity of natural compounds using improved E-screen assay,” Acta Pharmacologica Sinica, vol. 23, no. 6, pp. 572–576, 2002. View at Google Scholar · View at Scopus