Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2015 (2015), Article ID 248529, 16 pages
http://dx.doi.org/10.1155/2015/248529
Review Article

Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy?

1Department of Child and Adolescent Psychiatry, Faculty of Medicine, Comenius University and Child University Hospital, 833 40 Bratislava, Slovakia
2Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia

Received 23 September 2014; Revised 6 February 2015; Accepted 10 February 2015

Academic Editor: Cristina Angeloni

Copyright © 2015 Jana Trebatická and Zdeňka Ďuračková. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sobocki, B. Jönsson, J. Angst, and C. Rehnberg, “Cost of depression in Europe,” Journal of Mental Health Policy and Economics, vol. 9, no. 2, pp. 87–98, 2006. View at Google Scholar · View at Scopus
  2. R. Meeusen, “Exercise, nutrition and the brain,” Sports Medicine, vol. 44, supplement 1, pp. S47–S56, 2014. View at Publisher · View at Google Scholar
  3. G. P. Dias, N. Cavegn, A. Nix et al., “The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 541971, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Mo, Y. Chen, L. Huang, H. Zhang, J. Li, and W. Zhou, “Neuroprotective effect of tea polyphenols on oxyhemoglobin induced subarachnoid hemorrhage in mice,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 743938, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Wright, “Forging a modern generation of polyphenol-based therapeutics,” British Journal of Pharmacology, vol. 169, no. 4, pp. 844–847, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. U. Gundimeda, T. H. McNeill, J. E. Schiffman, D. R. Hinton, and R. Gopalakrishna, “Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: possible role of reactive oxygen species,” Journal of Neuroscience Research, vol. 88, no. 16, pp. 3644–3655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ashafaq, S. S. Raza, M. M. Khan et al., “Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia,” Neurochemical Research, vol. 37, no. 8, pp. 1747–1760, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Ďuračková, “Free radicals and antioxidants for non-experts,” in Systems Biology of Free Radicals and Antioxidants, I. Laher, Ed., Springer, Berlin, Germany, 2014. View at Google Scholar
  9. M. Franco, “New option for chronic fatigue syndrome,” Life Extension Magazine, p. 18, 2014. View at Google Scholar
  10. G. Belcaro, U. Cornelli, R. Luzzi et al., “QR (Quercus Robur Extract, Robuvit) supplementation in subjects with chronic fatigue syndrome (CFS) and increased oxidative stress. A pilot registry,” Journal of Neurosurgical Sciences. In press.
  11. J. A. Ross and C. M. Kasum, “Dietary flavonoids: bioavailability, metabolic effects, and safety,” Annual Review of Nutrition, vol. 22, pp. 19–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Manach and J. L. Donovan, “Pharmacokinetics and metabolism of dietary flavonoids in humans,” Free Radical Research, vol. 38, no. 8, pp. 771–785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Grimm, R. Skrabala, Z. Chovanová et al., “Single and multiple dose pharmacokinetics of maritime pine bark extract (Pycnogenol) after oral administration to healthy volunteers,” BMC Clinical Pharmacology, vol. 6, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Curin, M. F. Ritz, and R. Andriantsitohaina, “Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes,” Cardiovascular & Hematological Agents in Medicinal Chemistry, vol. 4, no. 4, pp. 277–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Ramassamy, “Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets,” European Journal of Pharmacology, vol. 545, no. 1, pp. 51–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Trebatická, S. Kopasová, Z. Hradečná et al., “Treatment of ADHD with French maritime pine bark extract, Pycnogenol,” European Child and Adolescent Psychiatry, vol. 15, no. 6, pp. 329–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Knekt, J. Kumpulainen, R. Järvinen et al., “Flavonoid intake and risk of chronic diseases,” The American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 560–568, 2002. View at Google Scholar · View at Scopus
  19. R. J. Williams, J. P. E. Spencer, and C. Rice-Evans, “Flavonoids: antioxidants or signalling molecules?” Free Radical Biology and Medicine, vol. 36, no. 7, pp. 838–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. B. Lotito and B. Frei, “Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?” Free Radical Biology and Medicine, vol. 41, no. 12, pp. 1727–1746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Koláček, J. Muchová, S. Vranková et al., “Effect of natural polyphenols, pycnogenol on superoxide dismutase and nitric oxide synthase in diabetic rats,” Prague Medical Report, vol. 111, no. 4, pp. 279–288, 2010. View at Google Scholar · View at Scopus
  22. B. Halliwell, J. Rafter, and A. Jenner, “Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?” The American Journal of Clinical Nutrition, vol. 81, supplement 1, pp. 268S–276S, 2005. View at Google Scholar · View at Scopus
  23. F. Gomez-Pinilla and T. T. J. Nguyen, “Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders,” Nutritional Neuroscience, vol. 15, no. 3, pp. 127–133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Chovanová, J. Muchová, M. Sivoňová et al., “Effect of polyphenolic extract, Pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder,” Free Radical Research, vol. 40, no. 9, pp. 1003–1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Ďuračková, “Some current insights into oxidative stress,” Physiological Research, vol. 59, no. 4, pp. 459–469, 2010. View at Google Scholar · View at Scopus
  26. J. P. E. Spencer, “Interactions of flavonoids and their metabolites with cell signaling cascades,” in Nutrigenomics, G. Rimbach, J. Fuchs, and L. Packer, Eds., Taylor & Francis, Boca Raton, Fla, USA, 2005. View at Google Scholar
  27. L. Križková, Z. Chovanová, Z. Ďuračková, and J. Krajčovič, “Antimutagenic in vitro activity of plant polyphenols: Pycnogenol® and Ginkgo biloba extract (EGb 761),” Phytotherapy Research, vol. 22, no. 3, pp. 384–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Ďuračková, B. Trebatický, V. Novotný, I. Žitňanová, and J. Breza, “Lipid metabolism and erectile function improvement by Pycnogenol, extract from the bark of Pinus pinaster in patients suffering from erectile dysfunction—a pilot study,” Nutrition Research, vol. 23, no. 9, pp. 1189–1198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Golański, J. Muchova, R. Golański, Z. Durackova, L. Markuszewski, and C. Watała, “Does pycnogenol intensify the efficacy of acetylsalicylic acid in the inhibition of platelet function? In vitro experience,” Postepy Higieny I Medycyny Doswiadczalnej, vol. 60, pp. 316–321, 2006. View at Google Scholar · View at Scopus
  30. G. Nie, C. Jin, Y. Cao, S. Shen, and B. Zhao, “Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells,” Archives of Biochemistry and Biophysics, vol. 397, no. 1, pp. 84–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Schäfer, Z. Chovanová, J. Muchová et al., “Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol),” Biomedicine and Pharmacotherapy, vol. 60, no. 1, pp. 5–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Nowak, “Antioxidant plant polyphenols and cognitive disorders,” in Studies on Psychiatric Disorders, A. Dietrich-Muszalska, V. Chauhan, and S. Grignon, Eds., Humana Press, New York, NY, USA, 2015. View at Google Scholar
  33. S. Schaffer and B. Halliwell, “Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations,” Genes and Nutrition, vol. 7, no. 2, pp. 99–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Labuda, M. Bučková, L. Heilerová, S. Šilhár, and I. Štepánek, “Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor,” Analytical and Bioanalytical Chemistry, vol. 376, no. 2, pp. 168–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Procházková, I. Boušová, and N. Wilhelmová, “Antioxidant and prooxidant properties of flavonoids,” Fitoterapia, vol. 82, no. 4, pp. 513–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. G. P. Kumar and F. Khanum, “Neuroprotective potential of phytochemicals,” Pharmacognosy Reviews, vol. 6, no. 12, pp. 81–90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Finsterwald, H. Fiumelli, J.-R. Cardinaux, and J.-L. Martin, “Regulation of dendritic development by BDNF requires activation of CRTC1 by glutamate,” The Journal of Biological Chemistry, vol. 285, no. 37, pp. 28587–28595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Scapagnini, S. Davinelli, F. Drago, A. de Lorenzo, and G. Oriani, “Antioxidants as antidepressants: fact or fiction?” CNS Drugs, vol. 26, no. 6, pp. 477–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. G. V. Carr and I. Lucki, “The role of serotonin receptor subtypes in treating depression: a review of animal studies,” Psychopharmacology (Berl.), vol. 213, no. 2-3, pp. 265–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Owens, “Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond,” Journal of Clinical Psychiatry, vol. 65, no. 4, pp. 5–10, 2004. View at Google Scholar · View at Scopus
  41. V. Maletic, M. Robinson, T. Oakes, S. Iyengar, S. G. Ball, and J. Russell, “Neurobiology of depression: an integrated view of key findings,” International Journal of Clinical Practice, vol. 61, no. 12, pp. 2030–2040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Matthes, V. Mosienko, S. Bashammakh, N. Alenina, and M. Bader, “Tryptophan hydroxylase as novel target for the treatment of depressive disorders,” Pharmacology, vol. 85, no. 2, pp. 95–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Maes, E. Bosmans, E. Suy, C. Vandervorst, C. De Jonckheere, and J. Raus, “Immune disturbances during major depression: upregulated expression of interleukin-2 receptors,” Neuropsychobiology, vol. 24, no. 3, pp. 115–120, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Maes, “The monocyte-T-lymphocyte hypothesis of major depression,” Psychoneuroendocrinology, vol. 20, no. 2, pp. 111–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. C. A. Meyers, M. Albitar, and E. Estey, “Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome,” Cancer, vol. 104, no. 4, pp. 788–793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Motivala, A. Sarfatti, L. Olmos, and M. R. Irwin, “Inflammatory markers and sleep disturbance in major depression,” Psychosomatic Medicine, vol. 67, no. 2, pp. 187–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. B.-H. Lee and Y.-K. Kim, “The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment,” Psychiatry Investigation, vol. 7, no. 4, pp. 231–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Eyre and B. T. Baune, “Neuroplastic changes in depression: a role for the immune system,” Psychoneuroendocrinology, vol. 37, no. 9, pp. 1397–1416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R. S. Duman, “Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression,” Dialogues in Clinical Neuroscience, vol. 11, no. 3, pp. 239–255, 2009. View at Google Scholar · View at Scopus
  50. A. L. Lopresti, S. D. Hood, and P. D. Drummond, “A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise,” Journal of Affective Disorders, vol. 148, no. 1, pp. 12–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. C. M. Pariante and S. L. Lightman, “The HPA axis in major depression: classical theories and new developments,” Trends in Neurosciences, vol. 31, no. 9, pp. 464–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. W. Gold and G. P. Chrousos, “Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states,” Molecular Psychiatry, vol. 7, no. 3, pp. 254–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Anacker, P. A. Zunszain, L. A. Carvalho, and C. M. Pariante, “The glucocorticoid receptor: pivot of depression and of antidepressant treatment?” Psychoneuroendocrinology, vol. 36, no. 3, pp. 415–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Anacker, P. A. Zunszain, A. Cattaneo et al., “Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor,” Molecular Psychiatry, vol. 16, no. 7, pp. 738–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Koene, T. L. Kozicz, R. J. T. Rodenburg et al., “Major depression in adolescent children consecutively diagnosed with mitochondrial disorder,” Journal of Affective Disorders, vol. 114, no. 1–3, pp. 327–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Gardner, A. Johansson, R. Wibom et al., “Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients,” Journal of Affective Disorders, vol. 76, no. 1–3, pp. 55–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Gardner and R. G. Boles, “Mitochondrial energy depletion in depression with somatization,” Psychotherapy and Psychosomatics, vol. 77, no. 2, pp. 127–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Gardner and R. G. Boles, “Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 730–743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. D. Khanzode, G. N. Dakhale, S. S. Khanzode, A. Saoji, and R. Palasodkar, “Oxidative damage and major depression: the potential antioxidant action of selective serotonin-re-uptake inhibitors,” Redox Report, vol. 8, no. 6, pp. 365–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Owen, M. J. Batterham, Y. C. Probst, B. F. S. Grenyer, and L. C. Tapsell, “Low plasma vitamin E levels in major depression: diet or disease?” European Journal of Clinical Nutrition, vol. 59, no. 2, pp. 304–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness,” Neuroendocrinology Letters, vol. 30, no. 4, pp. 462–469, 2009. View at Google Scholar · View at Scopus
  62. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression,” Neuroendocrinology Letters, vol. 32, no. 2, pp. 133–140, 2011. View at Google Scholar · View at Scopus
  63. M. E. Ozcan, M. Gulec, E. Ozerol, R. Polat, and O. Akyol, “Antioxidant enzyme activities and oxidative stress in affective disorders,” International Clinical Psychopharmacology, vol. 19, no. 2, pp. 89–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. Y.-C. Wei, F.-L. Zhou, D.-L. He et al., “The level of oxidative stress and the expression of genes involved in DNA-damage signaling pathways in depressive patients with colorectal carcinoma,” Journal of Psychosomatic Research, vol. 66, no. 3, pp. 259–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Herken, A. Gurel, S. Selek et al., “Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment,” Archives of Medical Research, vol. 38, no. 2, pp. 247–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease,” Journal of Affective Disorders, vol. 125, no. 1–3, pp. 287–294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Forlenza and G. E. Miller, “Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression,” Psychosomatic Medicine, vol. 68, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome,” Neuroendocrinology Letters, vol. 30, no. 6, pp. 715–722, 2009. View at Google Scholar · View at Scopus
  69. Z. Huang, X.-M. Zhong, Z.-Y. Li, C.-R. Feng, A.-J. Pan, and Q.-Q. Mao, “Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats,” Neuroscience Letters, vol. 493, no. 3, pp. 145–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. K. Kulkarni, M. K. Bhutani, and M. Bishnoi, “Antidepressant activity of curcumin: Involvement of serotonin and dopamine system,” Psychopharmacology, vol. 201, no. 3, pp. 435–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Sanmukhani, V. Satodia, J. Trivedi et al., “Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial,” Phytotherapy Research, vol. 28, no. 4, pp. 579–585, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Bergman, C. Miodownik, Y. Bersudsky et al., “Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study,” Clinical Neuropharmacology, vol. 36, no. 3, pp. 73–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. Sreejayan and M. N. A. Rao, “Nitric oxide scavenging by curcuminoids,” Journal of Pharmacy and Pharmacology, vol. 49, no. 1, pp. 105–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Scapagnini, S. Vasto, N. G. Abraham, C. Caruso, D. Zella, and G. Fabio, “Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders,” Molecular Neurobiology, vol. 44, no. 2, pp. 192–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. W.-Q. Chen, X.-L. Zhao, Y. Hou et al., “Protective effects of green tea polyphenols on cognitive impairments induced by psychological stress in rats,” Behavioural Brain Research, vol. 202, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. W. L. Zhu, H. S. Shi, Y. M. Wei et al., “Green tea polyphenols produce antidepressant-like effects in adult mice,” Pharmacological Research, vol. 65, no. 1, pp. 74–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Vignes, T. Maurice, F. Lanté et al., “Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG),” Brain Research, vol. 1110, no. 1, pp. 102–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Q. Zhang, H. Yang, J. Wang et al., “Effect of green tea on reward learning in healthy individuals: a randomized, double-blind, placebo-controlled pilot study,” Nutrition Journal, vol. 12, no. 1, article 84, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Hou, M. A. Aboukhatwa, D.-L. Lei, K. Manaye, I. Khan, and Y. Luo, “Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice,” Neuropharmacology, vol. 58, no. 6, pp. 911–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Dreiseitel, G. Korte, P. Schreier et al., “Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B,” Pharmacological Research, vol. 59, no. 5, pp. 306–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Messaoudi, J.-F. Bisson, A. Nejdi, P. Rozan, and H. Javelot, “Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats,” Nutritional Neuroscience, vol. 11, no. 6, pp. 269–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Sathyapalan, S. Beckett, A. S. Rigby, D. D. Mellor, and S. L. Atkin, “High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome,” Nutrition Journal, vol. 9, no. 1, article 55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Natella, G. Leoni, M. Maldini et al., “Absorption, metabolism, and effects at transcriptome level of a standardized french oak wood extract, Robuvit, in healthy volunteers: Pilot Study,” Journal of Agricultural and Food Chemistry, vol. 62, no. 2, pp. 443–453, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Belcaro, M. Dugall, S. Hu, A. Ledda, and E. Ippolito, “French oak wood (Quercus robur) extract (Robuvit) in primary lymphedema: a supplement, pilot, registry evaluation,” International Journal of Angiology, 2014. View at Publisher · View at Google Scholar
  85. G. Belcaro, U. Cornelli, R. Luzzi et al., “Improved management of primary chronic fatigue syndrome with the supplement French oak wood extract (Robuvit): a pilot, registry evaluation,” Panminerva Medica, vol. 56, no. 1, pp. 63–72, 2014. View at Google Scholar · View at Scopus
  86. G. Belcaro, G. Gizzi, S. Hu et al., “Robuvit (French oak wood extract) in the management of functional, temporary hepatic damage. A registry, pilot study,” Minerva Medica, vol. 105, no. 1, pp. 41–50, 2014. View at Google Scholar · View at Scopus
  87. Z. Országhová, I. Waczulíková, C. Burki, P. Rohdewald, and Z. Ďuračková, “An effect of oak-wood extract (Robuvit) on energy levels in healthy adults—a pilot study,” Submitted to Phytotherapy Research.
  88. M. Horváthová, Z. Országhová, L. Laubertová et al., “Effect of the French oak wood extract Robuvit on markers of oxidative stress and activity of antioxidant enzymes in healthy volunteers: a pilot study,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 639868, 6 pages, 2014. View at Publisher · View at Google Scholar
  89. N. Sinn, “Nutritional and dietary influences on attention deficit hyperactivity disorder,” Nutrition Reviews, vol. 66, no. 10, pp. 558–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. R. C. Kessler, L. Adler, M. Ames et al., “The prevalence and effects of adult attention deficit/hyperactivity disorder on work performance in a nationally representative sample of workers,” Journal of Occupational and Environmental Medicine, vol. 47, no. 6, pp. 565–572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Coghill, S. Bonnar, S. Duke, J. Graham, and S. Seth, Child and Adolescent Psychiatry, Oxford University Press, New York, NY, USA, 2009.
  92. P. Curatolo, E. D'Agati, and R. Moavero, “The neurobiological basis of ADHD,” Italian Journal of Pediatrics, vol. 36, article 79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. L. T. Curtis and K. Patel, “Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): a review,” Journal of Alternative and Complementary Medicine, vol. 14, no. 1, pp. 79–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Sarris, J. Kean, I. Schweitzer, and J. Lake, “Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): a systematic review of the evidence,” Complementary Therapies in Medicine, vol. 19, no. 4, pp. 216–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Sinn and J. Bryan, “Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD,” Journal of Developmental and Behavioral Pediatrics, vol. 28, no. 2, pp. 82–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. D. McCann, A. Barrett, A. Cooper et al., “Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial,” The Lancet, vol. 370, no. 9598, pp. 1560–1567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. R. E. Cimera, Making ADHD a Gift: Teaching Superman How to Fly, Scarecrow Education, Rowman & Littlefield, Lanham, Md, USA, 2002.
  98. N. Joseph, Y. Zhang-James, A. Perl, and S. V. Faraone, “Oxidative stress and ADHD: a meta-analysis,” Journal of Attention Disorders, 2013. View at Publisher · View at Google Scholar
  99. M. Bulut, S. Selek, H. S. Gergerlioglu et al., “Malondialdehyde levels in adult attention-deficit hyperactivity disorder,” Journal of Psychiatry and Neuroscience, vol. 32, no. 6, pp. 435–438, 2007. View at Google Scholar · View at Scopus
  100. D. Oztop, H. Altun, G. Baskol, and S. Ozsoy, “Oxidative stress in children with attention deficit hyperactivity disorder,” Clinical Biochemistry, vol. 45, no. 10-11, pp. 745–748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Essawy, I. El-Ghohary, A. El-Missiry, O. Kahla, A. Soliman, and O. El-Rashidi, “Oxidative stress in attention deficit hyperactivity disorder patients,” Current Psychiatry, vol. 16, no. 1, p. 5669, 2009. View at Google Scholar
  102. S. Selek, H. A. Savas, H. S. Gergerlioglu, M. Bulut, and H. R. Yilmaz, “Oxidative imbalance in adult attention deficit/hyperactivity disorder,” Biological Psychology, vol. 79, no. 2, pp. 256–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. O. Akyol, S. Zoroglu, F. Armutcu, S. Sahin, and A. Gurel, “Nitric oxide as a physiopathological factor in neuropsychiatric disorders,” In Vivo, vol. 18, no. 3, pp. 377–390, 2004. View at Google Scholar · View at Scopus
  104. M. Ceylan, S. Sener, A. C. Bayraktar, and M. Kavutcu, “Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 8, pp. 1491–1494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Dvořáková, D. Ježová, P. Blažíček et al., “Urinary catecholamines in children with attention deficit hyperactivity disorder (ADHD): modulation by a polyphenolic extract from pine bark (Pycnogenol),” Nutritional Neuroscience, vol. 10, no. 3-4, pp. 151–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. O. Erel, “A novel automated method to measure total antioxidant response against potent free radical reactions,” Clinical Biochemistry, vol. 37, no. 2, pp. 112–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. O. Erel, “A new automated colorimetric method for measuring total oxidant status,” Clinical Biochemistry, vol. 38, no. 12, pp. 1103–1111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Selek and M. F. Ceylan, “A relationship between oxidative status and attention deficit hyperactivity disorder,” in Studies on Psychiatric Disorders, A. Dietrich-Muszalska, V. Chauhan, and S. Grignon, Eds., Humana Press, New York, NY, USA, 2015. View at Google Scholar
  109. C. Ramassamy, Y. Christen, F. Clostre, and J. Costentin, “The Ginkgo biloba extract, EGb761, increases synaptosomal uptake of 5-hydroxytryptamine: in-vitro and ex-vivo studies,” Journal of Pharmacy and Pharmacology, vol. 44, no. 11, pp. 943–945, 1992. View at Publisher · View at Google Scholar · View at Scopus
  110. J. J. Rucklidge, J. Johnstone, and B. J. Kaplan, “Nutrient supplementation approaches in the treatment of ADHD,” Expert Review of Neurotherapeutics, vol. 9, no. 4, pp. 461–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Salehi, R. Imani, M. R. Mohammadi et al., “Ginkgo biloba for attention-deficit/hyperactivity disorder in children and adolescents: a double blind, randomized controlled trial,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 1, pp. 76–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Uebel-von Sandersleben, A. Rothenberger, B. Albrecht, L. G. Rothenberger, S. Klement, and N. Bock, “Ginkgo biloba extract EGb 761 in children with ADHD,” Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, vol. 42, no. 5, pp. 337–347, 2014. View at Publisher · View at Google Scholar
  113. W. Weber, A. Vander Stoep, R. L. McCarty, N. S. Weiss, J. Biederman, and J. McClellan, “Hypericum perforatum (St John's Wort) for attention-deficit/hyperactivity disorder in children and adolescents: a randomized controlled trial,” The Journal of the American Medical Association, vol. 299, no. 22, pp. 2633–2641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. J.-J. Li, Z.-W. Li, S.-Z. Wang et al., “Ningdong granule: a complementary and alternative therapy in the treatment of attention deficit/hyperactivity disorder,” Psychopharmacology, vol. 216, no. 4, pp. 501–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. I. C. Dela Peña, S. Y. Yoon, Y. Kim et al., “5,7-Dihydroxy-6-methoxy-4′-phenoxyflavone, a derivative of oroxylin A improves attention-deficit/hyperactivity disorder (ADHD)-like behaviors in spontaneously hypertensive rats,” European Journal of Pharmacology, vol. 715, no. 1–3, pp. 337–344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Y. Yoon, I. D. Peña, S. M. Kim et al., “Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro,” Archives of Pharmacal Research, vol. 36, no. 1, pp. 134–140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Rohdewald, “A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology,” International Journal of Clinical Pharmacology and Therapeutics, vol. 40, no. 4, pp. 158–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Rohdewald, “Letter to the editor: pycnogenol protects DNA against oxidative damage in vivo,” Phytotherapy Research, vol. 19, no. 3, p. 262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. S. A. Baldwin, I. Fugaccia, D. R. Brown, L. V. Brown, and S. W. Scheff, “Blood-brain barrier breach following cortical contusion in the rat,” Journal of Neurosurgery, vol. 85, no. 3, pp. 476–481, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Kurlbaum, M. Mülek, and P. Högger, “Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes,” PLoS ONE, vol. 8, no. 4, Article ID e63197, 2013. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Sivoňová, I. Waczulíková, E. Kilanczyk et al., “The effect of Pycnogenol on the erythrocyte membrane fluidity,” General Physiology and Biophysics, vol. 23, no. 1, pp. 39–51, 2004. View at Google Scholar · View at Scopus
  122. J. E. Piletz, M. Sarasua, M. Chotani, A. Saran, and A. Halaris, “Relationship between membrane fluidity and adrenoceptor binding in depression,” Psychiatry Research, vol. 38, no. 1, pp. 1–12, 1991. View at Publisher · View at Google Scholar · View at Scopus
  123. M. A. Ansari, J. N. Keller, and S. W. Scheff, “Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity,” Free Radical Biology and Medicine, vol. 45, no. 11, pp. 1510–1519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. A. J. Schmidt, J.-C. Krieg, U. M. Hemmeter et al., “Impact of plant extracts tested in attention-deficit/hyperactivity disorder treatment on cell survival and energy metabolism in human neuroblastoma SH-SY5Y cells,” Phytotherapy Research, vol. 24, no. 10, pp. 1549–1553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. M. M. Khan, M. N. Hoda, T. Ishrat et al., “Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by Pycnogenol in mouse model of Parkinson's disease,” Behavioural Pharmacology, vol. 21, no. 5-6, pp. 563–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. S. W. Scheff, M. A. Ansari, and K. N. Roberts, “Neuroprotective effect of Pycnogenol following traumatic brain injury,” Experimental Neurology, vol. 239, no. 1, pp. 183–191, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. M. A. Ansari, K. N. Roberts, and S. W. Scheff, “Dose- and time-dependent neuroprotective effects of Pycnogenol following traumatic brain injury,” Journal of Neurotrauma, vol. 30, no. 17, pp. 1542–1549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Luzzi, G. Belcaro, C. Zulli et al., “Pycnogenol supplementation improves cognitive function, attention and mental performance in students,” Panminerva Medica, vol. 53, supplement 1, no. 3, pp. 75–82, 2011. View at Google Scholar · View at Scopus
  129. G. Belcaro, R. Luzzi, M. Dugall, E. Ippolito, and A. Saggino, “Pycnogenol improves cognitive function, attention, mental performance and specific professional skills in healthy professionals age 35–55,” Journal of Neurosurgical Sciences, vol. 58, no. 4, pp. 239–248, 2014. View at Google Scholar
  130. R. A. Passwater, All about Pycnogenol, Avery Publishing Group, New York, NY, USA, 1998.
  131. S. W. Heimann, “Pycnogenol for ADHD?” Journal of the American Academy of Child & Adolescent Psychiatry, vol. 38, no. 4, pp. 357–358, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. J. L. Hanley, Attention Deficit Disorder, Impact Communications, Green Bay, Wis, USA, 1999.
  133. H. Masao, “Pycnogenol's therapeutic effect in improving ADHD symptoms in children confirmed,” Mainichi Shimbun, vol. 10, 2000. View at Google Scholar
  134. S. Tenenbaum, J. C. Paull, E. P. Sparrow, D. K. Dodd, and L. Green, “An experimental comparison of Pycnogenol and methylphenidate in adults with Attention-Deficit/Hyperactivity Disorder (ADHD),” Journal of Attention Disorders, vol. 6, no. 2, pp. 49–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Dvořáková, M. Sivoňová, J. Trebatická et al., “The effect of polyphenolic extract from pine bark, Pycnogenol, on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD),” Redox Report, vol. 11, no. 4, pp. 163–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Schoonees, J. Visser, A. Musekiwa, and J. Volmink, “Pycnogenol (extract of French maritime pine bark) for the treatment of chronic disorders,” Cochrane Database of Systematic Reviews, vol. 4, Article ID CD008294, 2012. View at Publisher · View at Google Scholar
  137. M. Bošković, T. Vovk, B. K. Plesničar, and I. Grabnar, “Oxidative stress in schizophrenia,” Current Neuropharmacology, vol. 9, no. 2, pp. 301–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Q. Do, “Schizophrenia: genes, environment and neurodevelopment,” Revue Médicale de la Suisse Romande, vol. 9, no. 398, pp. 1672–1677, 2013 (French). View at Google Scholar · View at Scopus
  139. S. P. Mahadik and S. Mukherjee, “Free radical pathology and antioxidant defense in schizophrenia: a review,” Schizophrenia Research, vol. 19, no. 1, pp. 1–17, 1996. View at Publisher · View at Google Scholar · View at Scopus
  140. I. Pérez-Neri, J. Ramírez-Bermúdez, S. Montes, and C. Ríos, “Possible mechanisms of neurodegeneration in schizophrenia,” Neurochemical Research, vol. 31, no. 10, pp. 1279–1294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. V. Tang and J.-F. Wang, “Mitochondrial dysfunction and oxidative stress in bipolar disorder,” in Systems Biology of Free Radicals and Antioxidants, I. Laher, Ed., Springer, Berlin, Germany, 2014. View at Google Scholar
  142. A. Monin, P. S. Baumann, A. Griffa et al., “Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients,” Molecular Psychiatry, 2014. View at Publisher · View at Google Scholar
  143. A. Dietrich-Muszalska and B. Olas, “Isoprostenes as indicators of oxidative stress in schizophrenia,” The World Journal of Biological Psychiatry, vol. 10, no. 1, pp. 27–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Reddy, M. Keshavan, and J. K. Yao, “Reduced plasma antioxidants in first-episode patients with schizophrenia,” Schizophrenia Research, vol. 62, no. 3, pp. 205–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. G. L. Bowman, J. Shannon, B. Frei, J. A. Kaye, and J. F. Quinn, “Uric acid as a CNS antioxidant,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1331–1336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. T. M. Michel, J. Thome, D. Martin et al., “Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis,” Journal of Neural Transmission, vol. 111, no. 9, pp. 1191–1201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Ciobica, M. Padurariu, I. Dobrin, C. Stefanescu, and R. Dobrin, “Oxidative stress in schizophrenia—focusing on the main markers,” Psychiatria Danubina, vol. 23, no. 3, pp. 237–245, 2011. View at Google Scholar · View at Scopus
  148. S. Grignon and J. M. Chianetta, “Assessment of malondialdehyde levels in schizophrenia: a meta-analysis and some methodological considerations,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 2, pp. 365–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. J. D. Morrow, “The isoprostanes—unique products of arachidonate peroxidation: their role as mediators of oxidant stress,” Current Pharmaceutical Design, vol. 12, no. 8, pp. 895–902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Dietrich-Muszalska, B. Olas, R. Głowacki, and E. Bald, “Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia,” Neuropsychobiology, vol. 59, no. 1, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Jorgensen, K. Broedbaek, A. Fink-Jensen et al., “Increased systemic oxidatively generated DNA and RNA damage in schizophrenia,” Psychiatry Research, vol. 209, no. 3, pp. 417–423, 2013. View at Publisher · View at Google Scholar · View at Scopus
  152. D. Malaspina, R. Dracxler, J. Walsh-Messinger et al., “Telomere length, family history, and paternal age in schizophrenia,” Molecular Genetics & Genomic Medicine, vol. 2, no. 4, pp. 326–331, 2014. View at Publisher · View at Google Scholar
  153. L. F. Jarskog, L. A. Glantz, J. H. Gilmore, and J. A. Lieberman, “Apoptotic mechanisms in the pathophysiology of schizophrenia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 29, no. 5, pp. 846–858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. L. A. Glantz, J. H. Gilmore, J. A. Lieberman, and L. F. Jarskog, “Apoptotic mechanisms and the synaptic pathology of schizophrenia,” Schizophrenia Research, vol. 81, no. 1, pp. 47–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Dietrich-Muszalska, “Oxidative stress in schizophrenia,” in Studies on Psychiatric Disorders, A. Dietrich-Muszalska, V. Chauhan, and S. Grignon, Eds., Humana Press, NewYork, NY, USA, 2015. View at Google Scholar
  156. O. Pazvantoglu, S. Selek, I. T. Okay et al., “Oxidative mechanisms in schizophrenia and their relationship with illness subtype and symptom profile,” Psychiatry and Clinical Neurosciences, vol. 63, no. 5, pp. 693–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. J. M. Loftis, C. J. Wilhelm, and M. Huckans, “Effect of epigallocatechin gallate supplementation in schizophrenia and bipolar disorder: an 8-week, randomized, double-blind, placebo-controlled study,” Therapeutic Advances in Psychopharmacology, vol. 3, no. 1, pp. 21–27, 2013. View at Publisher · View at Google Scholar
  158. G. Tsai, D. C. Goff, R. W. Chang, J. Flood, L. Baer, and J. T. Coyle, “Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia,” The American Journal of Psychiatry, vol. 155, no. 9, pp. 1207–1213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  159. M. Bishnoi, K. Chopra, and S. K. Kulkarni, “Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain,” Pharmacology Biochemistry and Behavior, vol. 88, no. 4, pp. 511–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. P. S. Naidu and S. K. Kulkarni, “Quercefin, a bioflavonoid, reverses haloperidol-induced catalepsy,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 26, no. 5, pp. 323–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Dietrich-Muszalska, B. Olas, B. Kontek, and J. Rabe-Jabłońska, “Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol,” International Journal of Biological Macromolecules, vol. 49, no. 1, pp. 113–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Dietrich-Muszalska, B. Kontek, B. Olas, and J. Rabe-Jablońska, “Epicatechin inhibits human plasma lipid peroxidation caused by haloperidol in vitro,” Neurochemical Research, vol. 37, no. 3, pp. 557–562, 2012. View at Publisher · View at Google Scholar · View at Scopus
  163. A. Dietrich-Muszalska, J. Kopka, and B. Kontek, “Polyphenols from berries of Aronia melanocarpa reduce the plasma lipid peroxidation induced by Ziprasidone,” Schizophrenia Research and Treatment, vol. 2014, Article ID 602390, 7 pages, 2014. View at Publisher · View at Google Scholar
  164. W.-F. Zhang, Y.-L. Tan, X.-Y. Zhang, R. C. K. Chan, H.-R. Wu, and D.-F. Zhou, “Extract of Ginkgo biloba treatment for tardive dyskinesia in schizophrenia: a randomized, double-blind, placebo-controlled trial,” Journal of Clinical Psychiatry, vol. 72, no. 5, pp. 615–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. P. Suresh and A. B. Raju, “Antidopaminergic effects of leucine and genistein on shizophrenic rat models,” Neurosciences, vol. 18, no. 3, pp. 235–241, 2013. View at Google Scholar · View at Scopus
  166. I. Tsilioni, S. Panagiotidou, and T. C. Theoharides, “Exosomes in Neurologic and Psychiatric Disorders,” Clinical Therapeutics, 2014. View at Publisher · View at Google Scholar · View at Scopus
  167. P. O'Donnell, K. Q. Do, and C. Arango, “Oxidative/nitrosative stress in psychiatric disorders: are we there yet?” Schizophrenia Bulletin, vol. 40, no. 5, pp. 960–962, 2014. View at Publisher · View at Google Scholar
  168. L. Pathak, Y. Agrawal, and A. Dhir, “Natural polyphenols in the management of major depression,” Expert Opinion on Investigational Drugs, vol. 22, no. 7, pp. 863–880, 2013. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Sarris, A. C. Logan, T. N. Akbaraly et al., “Nutritional medicine as mainstream in psychiatry,” The Lancet Psychiatry, 2015. View at Publisher · View at Google Scholar