Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2015, Article ID 654594, 15 pages
http://dx.doi.org/10.1155/2015/654594
Review Article

Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia

Received 11 January 2015; Revised 20 March 2015; Accepted 13 April 2015

Academic Editor: Angel Catalá

Copyright © 2015 Jelena Krstić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Brooks, H. J. Lomax-Browne, T. M. Carter, C. E. Kinch, and D. M. S. Hall, “Molecular interactions in cancer cell metastasis,” Acta Histochemica, vol. 112, no. 1, pp. 3–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. B. Roberts and L. M. Wakefield, “The two faces of transforming growth factor β in carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8621–8623, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Caulin, F. G. Scholl, P. Frontelo, C. Gamallo, and M. Quintanilla, “Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-β1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype,” Cell Growth and Differentiation, vol. 6, no. 8, pp. 1027–1035, 1995. View at Google Scholar · View at Scopus
  4. P. Wikström, P. Stattin, I. Franck-Lissbrant, J.-E. Damber, and A. Bergh, “Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer,” Prostate, vol. 37, no. 1, pp. 19–29, 1998. View at Google Scholar · View at Scopus
  5. J. P. Theiry, “Epithelial-mesenchymal transitions in tumor progression,” Nature Reviews Cancer, vol. 2, no. 6, pp. 442–454, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. M. Wakefield and A. B. Roberts, “TGF-β signaling: positive and negative effects on tumorigenesis,” Current Opinion in Genetics and Development, vol. 12, no. 1, pp. 22–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Derynck and Y. E. Zhang, “Smad-dependent and Smad-independent pathways in TGF-β family signalling,” Nature, vol. 425, no. 6958, pp. 577–584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Cairns, I. S. Harris, and T. W. Mak, “Regulation of cancer cell metabolism,” Nature Reviews Cancer, vol. 11, no. 2, pp. 85–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Glasauer and N. S. Chandel, “Targeting antioxidants for cancer therapy,” Biochemical Pharmacology, vol. 92, no. 1, pp. 90–101, 2014. View at Publisher · View at Google Scholar
  10. R.-M. Liu and K. A. Gaston Pravia, “Oxidative stress and glutathione in TGF-β-mediated fibrogenesis,” Free Radical Biology and Medicine, vol. 48, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Tobar, V. Villar, and J. F. Santibanez, “ROS-NFκΒ mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion,” Molecular and Cellular Biochemistry, vol. 340, no. 1-2, pp. 195–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Tochhawng, S. Deng, S. Pervaiz, and C. T. Yap, “Redox regulation of cancer cell migration and invasion,” Mitochondrion, vol. 13, no. 3, pp. 246–253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Ishikawa, E. Kaneko, T. Sugimoto et al., “A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial-mesenchymal transition,” Biochemical and Biophysical Research Communications, vol. 443, no. 3, pp. 821–827, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Annes, J. S. Munger, and D. B. Rifkin, “Making sense of latent TGFβ activation,” Journal of Cell Science, vol. 116, no. 2, pp. 217–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C. K. Roberts and K. K. Sindhu, “Oxidative stress and metabolic syndrome,” Life Sciences, vol. 84, no. 21-22, pp. 705–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hassona, N. Cirillo, K. P. Lim et al., “Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β,” Carcinogenesis, vol. 34, no. 6, pp. 1286–1295, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. S. Santibañez, M. Quintanilla, and C. Bernabeu, “TGF-β/TGF-β receptor system and its role in physiological and pathological conditions,” Clinical Science, vol. 121, no. 6, pp. 233–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Krstic, I. Maslovaric, and J. F. Santibanez, “Novel patents and cancer therapies for transforming growth factor-beta and urokinase type plasminogen activator: potential use of their interplay in tumorigenesis,” Recent Patents on Anti-Cancer Drug Discovery, vol. 9, pp. 354–371, 2014. View at Google Scholar
  19. L. Attisano and J. L. Wrana, “Signal transduction by the TGF-β superfamily,” Science, vol. 296, no. 5573, pp. 1646–1647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Padua and J. Massagué, “Roles of TGFbeta in metastasis,” Cell Research, vol. 19, no. 1, pp. 89–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hata, G. Lagna, J. Massagué, and A. Hemmati-Brivanlou, “Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor,” Genes and Development, vol. 12, no. 2, pp. 186–197, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Bernabeu, J. M. Lopez-Novoa, and M. Quintanilla, “The emerging role of TGF-β superfamily coreceptors in cancer,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1792, no. 10, pp. 954–973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Kang, C. Liu, and R. Derynck, “New regulatory mechanisms of TGF-β receptor function,” Trends in Cell Biology, vol. 19, no. 8, pp. 385–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Mu, S. K. Gudey, and M. Landström, “Non-Smad signaling pathways,” Cell and Tissue Research, vol. 347, no. 1, pp. 11–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. F. Santibanez and J. Kocic, “Transforming growth factor-β superfamily, implications in development and differentiation of stem cells,” BioMolecular Concepts, vol. 3, no. 5, pp. 429–445, 2012. View at Publisher · View at Google Scholar
  26. B. Bierie and H. L. Moses, “TGF-β and cancer,” Cytokine and Growth Factor Reviews, vol. 17, no. 1-2, pp. 29–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Krstic and J. F. Santibanez, “Transforming growth factor-beta and matrix metalloproteinases functional interplay in cancer; implications in epithelial to mesenchymal transition,” Cell Biology: Research & Therapy, vol. S1, 2014. View at Google Scholar
  28. E. Meulmeester and P. Ten Dijke, “The dynamic roles of TGF-β in cancer,” Journal of Pathology, vol. 223, no. 2, pp. 205–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Y. Park, L. M. Wakefield, and M. Mamura, “Regulation of tumor immune surveillance and tumor immune subversion by TGF-β,” Immune Network, vol. 9, no. 4, pp. 122–126, 2009. View at Publisher · View at Google Scholar
  30. B. A. Teicher, “Transforming growth factor-β and the immune response to malignant disease,” Clinical Cancer Research, vol. 13, no. 21, pp. 6247–6251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. J. Gordon and G. C. Blobe, “Role of transforming growth factor-β superfamily signaling pathways in human disease,” Biochimica et Biophysica Acta, vol. 1782, no. 4, pp. 197–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Friess, Y. Yamanaka, M. Büchler et al., “Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival,” Gastroenterology, vol. 105, no. 6, pp. 1846–1856, 1993. View at Google Scholar · View at Scopus
  34. H. Wunderlich, T. Steiner, H. Kosmehl et al., “Increased transforming growth factor β1 plasma level in patients with renal cell carcinoma: a tumor-specific marker?” Urologia Internationalis, vol. 60, no. 4, pp. 205–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Ivanović, N. Todorović-Raković, M. Demajo et al., “Elevated plasma levels of transforming growth factor-β1 (TGF-β1) in patients with advanced breast cancer: association with disease progression,” European Journal of Cancer, vol. 39, no. 4, pp. 454–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Urashima, A. Ogata, D. Chauhan et al., “Transforming growth factor-β1: differential effects on multiple myeloma versus normal B cells,” Blood, vol. 87, no. 5, pp. 1928–1938, 1996. View at Google Scholar · View at Scopus
  37. Z. Gatalica and E. Torlakovic, “Pathology of the hereditary colorectal carcinoma,” Familial Cancer, vol. 7, no. 1, pp. 15–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Howe, M. G. Sayed, A. F. Ahmed et al., “The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations,” Journal of Medical Genetics, vol. 41, no. 7, pp. 484–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Sweet, J. Willis, X.-P. Zhou et al., “Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis,” The Journal of the American Medical Association, vol. 294, no. 19, pp. 2465–2473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Yang and X. Yang, “Smad4-mediated TGF-β signaling in tumorigenesis,” International Journal of Biological Sciences, vol. 6, no. 1, pp. 1–8, 2010. View at Google Scholar · View at Scopus
  41. G. Schneider and R. M. Schmid, “Genetic alterations in pancreatic carcinoma,” Molecular Cancer, vol. 2, article 15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Söreide, E. A. M. Janssen, H. Söiland, H. Körner, and J. P. A. Baak, “Microsatellite instability in colorectal cancer,” British Journal of Surgery, vol. 93, no. 4, pp. 395–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. K.-H. Shin, Y. J. Park, and J.-G. Park, “Mutational analysis of the transforming growth factor β receptor type II gene in hereditary nonpolyposis colorectal cancer and early-onset colorectal cancer patients,” Clinical Cancer Research, vol. 6, no. 2, pp. 536–540, 2000. View at Google Scholar · View at Scopus
  44. B. C. Dickinson and C. J. Chang, “Chemistry and biology of reactive oxygen species in signaling or stress responses,” Nature Chemical Biology, vol. 7, no. 8, pp. 504–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Yang, L. Zou, C. Huang, and Y. Lei, “Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities,” Drug Development Research, vol. 75, no. 5, pp. 331–341, 2014. View at Publisher · View at Google Scholar
  46. D. Nikitovic, E. Corsini, D. Kouretas, A. Tsatsakis, and G. Tzanakakis, “ROS-major mediators of extracellular matrix remodeling during tumor progression,” Food and Chemical Toxicology, vol. 61, pp. 178–186, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Giannoni, M. Parri, and P. Chiarugi, “EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy,” Antioxidants and Redox Signaling, vol. 16, no. 11, pp. 1248–1263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. K.-H. Krause, “Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases,” Experimental Gerontology, vol. 42, no. 4, pp. 256–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Bedard and K.-H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. D. Albright, R. I. Salganik, C. N. Craciunescu, M.-H. Mar, and S. H. Zeisel, “Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes,” Journal of Cellular Biochemistry, vol. 89, no. 2, pp. 254–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Herrera, M. M. Murillo, A. Álvarez-Barrientos, J. Beltrán, M. Fernández, and I. Fabregat, “Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-β in fetal rat hepatocytes,” Free Radical Biology and Medicine, vol. 36, no. 1, pp. 16–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Y.-S. Yoon, J.-H. Lee, S.-C. Hwang, K. S. Choi, and G. Yoon, “TGF β1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells,” Oncogene, vol. 24, no. 11, pp. 1895–1903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. V. J. Thannickal and B. L. Fanburg, “Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor β1,” Journal of Biological Chemistry, vol. 270, no. 51, pp. 30334–30338, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. H. E. Boudreau, B. W. Casterline, B. Rada, A. Korzeniowska, and T. L. Leto, “Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells,” Free Radical Biology and Medicine, vol. 53, no. 7, pp. 1489–1499, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. H. E. Boudreau, B. W. Casterline, D. J. Burke, and T. L. Leto, “Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells,” British Journal of Cancer, vol. 110, no. 10, pp. 2569–2582, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Hiraga, M. Kato, S. Miyagawa, and T. Kamata, “Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells,” Anticancer Research, vol. 33, no. 10, pp. 4431–4438, 2013. View at Google Scholar · View at Scopus
  57. Y. M. Kim and M. Cho, “Activation of NADPH oxidase subunit NCF4 induces ROS-mediated EMT signaling in HeLa cells,” Cellular Signalling, vol. 26, no. 4, pp. 784–796, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Arsalane, C. M. Dubois, T. Muanza et al., “Transforming growth factor-β1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the GSH rate-limiting enzyme γ-glutamylcysteine synthetase,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 5, pp. 599–607, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Jardine, W. MacNee, K. Donaldson, and I. Rahman, “Molecular mechanism of transforming growth factor (TGF)-β1-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-1/ARE and Fra-1,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21158–21166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. A. V. Bakin, N. V. Stourman, K. R. Sekhar et al., “Smad3-ATF3 signaling mediates TGF-β suppression of genes encoding Phase II detoxifying proteins,” Free Radical Biology and Medicine, vol. 38, no. 3, pp. 375–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Q. Li, H. Y. Qureshi, A. Liacini, F. Dehnade, and M. Zafarullah, “Transforming growth factor β1 induction of tissue inhibitor of metalloProteinases 3 in articular chondrocytes is mediated by reactive oxygen species,” Free Radical Biology and Medicine, vol. 37, no. 2, pp. 196–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Q. Li, H. Y. Qureshi, A. Liacini, F. Dehnade, and M. Zafarullah, “Transforming growth factor beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species,” Free Radical Biology and Medicine, vol. 37, no. 2, pp. 196–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Y. Rhyu, Y. Yang, H. Ha et al., “Role of reactive oxygen species in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 667–675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. T. He, T. Quan, Y. Shao, J. J. Voorhees, and G. J. Fisher, “Oxidative exposure impairs TGF-β pathway via reduction of type II receptor and SMAD3 in human skin fibroblasts,” AGE (Dordr), vol. 36, article 9623, 2014. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Levy and C. S. Hill, “Alterations in components of the TGF-β superfamily signaling pathways in human cancer,” Cytokine and Growth Factor Reviews, vol. 17, no. 1-2, pp. 41–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Corcoran and T. G. Cotter, “Redox regulation of protein kinases,” FEBS Journal, vol. 280, no. 9, pp. 1944–1965, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Morgan and Z.-G. Liu, “Crosstalk of reactive oxygen species and NF-κB signaling,” Cell Research, vol. 21, no. 1, pp. 103–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. B. Toledano and W. J. Leonard, “Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 10, pp. 4328–4332, 1991. View at Publisher · View at Google Scholar · View at Scopus
  69. D. B. Rifkin, “Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 7409–7412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Jullien, T. M. Berg, and D. A. Lawrence, “Acidic cellular environments: activation of latent TGF-β and sensitization of cellular responses to TGF-β and EGF,” International Journal of Cancer, vol. 43, no. 5, pp. 886–891, 1989. View at Publisher · View at Google Scholar · View at Scopus
  71. P. D. Brown, L. M. Wakefield, A. D. Levinson, and M. B. Sporn, “Physicochemical activation of recombinant latent transforming growth factor-beta's 1, 2 and 3,” Growth Factors, vol. 3, no. 1, pp. 35–43, 1990. View at Publisher · View at Google Scholar · View at Scopus
  72. R. M. Lyons, L. E. Gentry, A. F. Purchio, and H. L. Moses, “Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin,” Journal of Cell Biology, vol. 110, no. 4, pp. 1361–1367, 1990. View at Publisher · View at Google Scholar · View at Scopus
  73. M. H. Barcellos-Hoff and T. A. Dix, “Redox-mediated activation of latent transforming growth factor-β1,” Molecular Endocrinology, vol. 10, no. 9, pp. 1077–1083, 1996. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Hyytiäinen, C. Penttinen, and J. Keski-Oja, “Latent TGF-β binding proteins: Extracellular matrix association and roles in TGF-beta activation,” Critical Reviews in Clinical Laboratory Sciences, vol. 41, no. 3, pp. 233–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. D. A. Pociask, P. J. Sime, and A. R. Brody, “Asbestos-derived reactive oxygen species activate TGF-β1,” Laboratory Investigation, vol. 84, no. 8, pp. 1013–1023, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. F. Jobling, J. D. Mott, M. T. Finnegan et al., “Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species,” Radiation Research, vol. 166, no. 6, pp. 839–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Vijayachandra, W. Higgins, J. Lee, and A. Glick, “Induction of p16ink4a and p19ARF by TGFβ1 contributes to growth arrest and senescence response in mouse keratinocytes,” Molecular Carcinogenesis, vol. 48, no. 3, pp. 181–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. R. Gorowiec, L. A. Borthwick, S. M. Parker, J. A. Kirby, G. C. Saretzki, and A. J. Fisher, “Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism,” Free Radical Biology and Medicine, vol. 52, no. 6, pp. 1024–1032, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Nogueira and N. Hay, “Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy,” Clinical Cancer Research, vol. 19, no. 16, pp. 4309–4314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Sabe, “Cancer early dissemination: cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor β signalling,” Journal of Biochemistry, vol. 149, no. 6, pp. 633–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial–mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Moreno-Bueno, H. Peinado, P. Molina et al., “The morphological and molecular features of the epithelial-to-mesenchymal transition,” Nature Protocols, vol. 4, no. 11, pp. 1591–1613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Moustakas and C.-H. Heldin, “The regulation of TGFβ signal transduction,” Development, vol. 136, no. 22, pp. 3699–3714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Juárez and T. A. Guise, “TGF-β in cancer and bone: implications for treatment of bone metastases,” Bone, vol. 48, no. 1, pp. 23–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. C.-H. Heldin, M. Vanlandewijck, and A. Moustakas, “Regulation of EMT by TGFβ in cancer,” FEBS Letters, vol. 586, no. 14, pp. 1959–1970, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Zavadil and E. P. Böttinger, “TGF-β and epithelial-to-mesenchymal transitions,” Oncogene, vol. 24, no. 37, pp. 5764–5774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Deckers, M. van Dinther, J. Buijs et al., “The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells,” Cancer Research, vol. 66, no. 4, pp. 2202–2209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. A. B. Roberts, F. Tian, S. D. Byfield et al., “Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis,” Cytokine & Growth Factor Reviews, vol. 17, no. 1-2, pp. 19–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. K. E. Hoot, J. Lighthall, G. Han et al., “Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression,” Journal of Clinical Investigation, vol. 118, no. 8, pp. 2722–2732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Oft, R. J. Akhurst, and A. Balmain, “Metastasis is driven by sequential elevation of H-ras and Smad2 levels,” Nature Cell Biology, vol. 4, no. 7, pp. 487–494, 2002. View at Google Scholar · View at Scopus
  92. J. Xu, S. Lamouille, and R. Derynck, “TGF-β-induced epithelial to mesenchymal transition,” Cell Research, vol. 19, no. 2, pp. 156–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. F. Santibañez, “JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes,” FEBS Letters, vol. 580, no. 22, pp. 5385–5389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. F. Santibáñez, J. Kocić, A. Fabra, A. Cano, and M. Quintanilla, “Rac1 modulates TGF-beta1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes,” FEBS Letters, vol. 584, no. 11, pp. 2305–2310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Cano, M. A. Pérez-Moreno, I. Rodrigo et al., “The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression,” Nature Cell Biology, vol. 2, no. 2, pp. 76–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Boutet, C. A. de Frutos, P. H. Maxwell, M. J. Mayol, J. Romero, and M. A. Nieto, “Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney,” The EMBO Journal, vol. 25, no. 23, pp. 5603–5613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. J. G. Lyons, V. Patel, N. C. Roue et al., “Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes,” Cancer Research, vol. 68, no. 12, pp. 4525–4530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Quintanilla, G. del Castillo, J. Kocic, and J. F. Santibanez, “TGF-B and MMPs: a complex regulatory loop involved in tumor progression,” in Matrix Metalloproteinases: Biology, Functions and Clinical Implications, N. Oshiro and E. Miyagi, Eds., Nova Science Publishers, 2012. View at Google Scholar
  99. J. F. Santibanez, “Transforming growth factor-Beta and urokinase-type plasminogen activator: dangerous partners in tumorigenesis-implications in skin cancer,” ISRN Dermatology, vol. 2013, Article ID 597927, 26 pages, 2013. View at Publisher · View at Google Scholar
  100. S. Cannito, E. Novo, L. V. di Bonzo, C. Busletta, S. Colombatto, and M. Parola, “Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease,” Antioxidants and Redox Signaling, vol. 12, no. 12, pp. 1383–1430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Barnett, R. S. Arnold, R. Mezencev, L. W. K. Chung, M. Zayzafoon, and V. Odero-Marah, “Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 34–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. G.-H. Zhu, C. Huang, Z.-Z. Feng, X.-H. Lv, and Z.-J. Qiu, “Hypoxia-induced snail expression through transcriptional regulation by HIF-1α in pancreatic cancer cells,” Digestive Diseases and Sciences, vol. 58, no. 12, pp. 3503–3515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Inumaru, O. Nagano, E. Takahashi et al., “Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress,” Genes to Cells, vol. 14, no. 6, pp. 703–716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. W.-S. Wu, “The signaling mechanism of ROS in tumor progression,” Cancer and Metastasis Reviews, vol. 25, no. 4, pp. 695–705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Peltoniemi, R. Kaarteenaho-Wiik, M. Säily et al., “Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-β in vitro and in interstitial lung diseases in vivo,” Human Pathology, vol. 35, no. 8, pp. 1000–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. C. H. Lillig, C. Berndt, and A. Holmgren, “Glutaredoxin systems,” Biochimica et Biophysica Acta—General Subjects, vol. 1780, no. 11, pp. 1304–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. E. K. Lee, W.-K. Jeon, M. Y. Chae et al., “Decreased expression of glutaredoxin 1 is required for transforming growth factor-β1-mediated epithelial-mesenchymal transition of EpRas mammary epithelial cells,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 1021–1027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. V. M. Felton, Z. Borok, and B. C. Willis, “N-acetylcysteine inhibits alveolar epithelial-mesenchymal transition,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 5, pp. L805–L812, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Fukawa, H. Kajiya, S. Ozeki, T. Ikebe, and K. Okabe, “Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGF-beta secretion,” Experimental Cell Research, vol. 318, no. 15, pp. 1926–1932, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Hiraga, M. Kato, S. Miyagawa, and T. Kamata, “Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells,” Anticancer Research, vol. 33, no. 10, pp. 4431–4438, 2013. View at Google Scholar · View at Scopus
  111. Y. Watanabe, S. Itoh, T. Goto et al., “TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling,” Molecular Cell, vol. 37, no. 1, pp. 123–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. E. B. Brunschwig, K. Wilson, D. Mack et al., “PMEPA1, a transforming growth factor-β-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer,” Cancer Research, vol. 63, no. 7, pp. 1568–1575, 2003. View at Google Scholar · View at Scopus
  113. J. Shi, D.-M. Wang, C.-M. Wang et al., “Insulin receptor substrate-1 suppresses transforming growth factor-beta1-mediated epithelial-mesenchymal transition,” Cancer Research, vol. 69, no. 18, pp. 7180–7187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Hu, K. He, D. Wang et al., “TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways,” Carcinogenesis, vol. 34, no. 8, pp. 1764–1772, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Catalano, A. Turdo, S. Di Franco, F. Dieli, M. Todaro, and G. Stassi, “Tumor and its microenvironment: a synergistic interplay,” Seminars in Cancer Biology, vol. 23, no. 6, pp. 522–532, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Landskron, M. De La Fuente, P. Thuwajit, C. Thuwajit, and M. A. Hermoso, “Chronic inflammation and cytokines in the tumor microenvironment,” Journal of Immunology Research, vol. 2014, Article ID 149185, 19 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. Yang, A. V. Bazhin, J. Werner, and S. Karakhanova, “Reactive oxygen species in the immune system,” International Reviews of Immunology, vol. 32, no. 3, pp. 249–270, 2013. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Gigante, L. Gesualdo, and E. Ranieri, “TGF-beta: a master switch in tumor immunity,” Current Pharmaceutical Design, vol. 18, no. 27, pp. 4126–4134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Leonarduzzi, B. Sottero, G. Testa, F. Biasi, and G. Poli, “New insights into redox-modulated cell signaling,” Current Pharmaceutical Design, vol. 17, no. 36, pp. 3994–4006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Kitagishi and S. Matsuda, “Redox regulation of tumor suppressor PTEN in cancer and aging (Review),” International Journal of Molecular Medicine, vol. 31, no. 3, pp. 511–515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  121. J. F. Passos, G. Saretzki, and T. von Zglinicki, “DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?” Nucleic Acids Research, vol. 35, no. 22, pp. 7505–7513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. O. A. Sedelnikova, I. Horikawa, D. B. Zimonjic, N. C. Popescu, W. M. Bonner, and J. C. Barrett, “Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks,” Nature Cell Biology, vol. 6, no. 2, pp. 168–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Michalak, J. Krzeszowiak, and I. Markiewicz-Górka, “The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems,” Postępy Higieny i Medycyny Doświadczalnej, vol. 68, pp. 1483–1491, 2014. View at Publisher · View at Google Scholar
  124. J. C. Acosta, A. Banito, T. Wuestefeld et al., “A complex secretory program orchestrated by the inflammasome controls paracrine senescence,” Nature Cell Biology, vol. 15, no. 8, pp. 978–990, 2013. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Katakura, E. Nakata, Y. Tabira et al., “Decreased tumorigenicity in vivo when transforming growth factor β treatment causes cancer cell senescence,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 4, pp. 815–821, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Senturk, M. Mumcuoglu, O. Gursoy-Yuzugullu, B. Cingoz, K. C. Akcali, and M. Ozturk, “Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth,” Hepatology, vol. 52, no. 3, pp. 966–974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Kretova, L. Sabova, Z. Hodny et al., “TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence,” Cellular Signalling, vol. 26, no. 12, pp. 2903–2911, 2014. View at Publisher · View at Google Scholar
  128. R. Tremain, M. Marko, V. Kinnimulki, H. Ueno, E. Bottinger, and A. Glick, “Defects in TGFβ signaling overcome senescence of mouse keratinocytes expressing v-rasHa,” Oncogene, vol. 19, no. 13, pp. 1698–1709, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Lin, J. Yang, A. G. Elkahloun et al., “Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells,” Molecular Biology of the Cell, vol. 23, no. 8, pp. 1569–1581, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. M. P. Lisanti, U. E. Martinez-Outschoorn, S. Pavlides et al., “Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine,” Cell Cycle, vol. 10, no. 13, pp. 2059–2063, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. E. A. Klein, I. M. Thompson Jr., C. M. Tangen et al., “Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT),” Journal of the American Medical Association, vol. 306, no. 14, pp. 1549–1556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. D. Trachootham, J. Alexandre, and P. Huang, “Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 579–591, 2009. View at Publisher · View at Google Scholar · View at Scopus