Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2015 (2015), Article ID 950890, 7 pages
http://dx.doi.org/10.1155/2015/950890
Review Article

Anticancer Properties of Phyllanthus emblica (Indian Gooseberry)

1The Lady Davis Institute The Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada H3T 1E2
2The Departments of Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada H3T 1E2

Received 25 September 2014; Revised 22 December 2014; Accepted 24 December 2014

Academic Editor: Tullia Maraldi

Copyright © 2015 Tiejun Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer, vol. 136, no. 5, pp. E359–E386, 2015. View at Publisher · View at Google Scholar
  2. P. Hanly, I. Soerjomataram, and L. Sharp, “Measuring the societal burden of cancer: the cost of lost productivity due to premature cancer-related mortality in Europe,” International Journal of Cancer, vol. 136, no. 4, pp. E136–E45, 2015. View at Publisher · View at Google Scholar
  3. G. A. Colditz and K. Bohlke, “Priorities for the primary prevention of breast cancer,” CA Cancer Journal for Clinicians, vol. 64, no. 3, pp. 186–194, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Huang, W. T. Lee, S. T. Tsai et al., “Tea consumption and risk of head and neck cancer,” PLoS ONE, vol. 9, no. 5, Article ID e96507, 2014. View at Publisher · View at Google Scholar
  5. L. Wang, X. Zhang, J. Liu, L. Shen, and Z. Li, “Tea consumption and lung cancer risk: a meta-analysis of case-control and cohort studies,” Nutrition, vol. 30, no. 10, pp. 1122–1127, 2014. View at Publisher · View at Google Scholar
  6. A. H. Eliassen, S. J. Hendrickson, L. A. Brinton et al., “Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies,” Journal of the National Cancer Institute, vol. 104, no. 24, pp. 1905–1916, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. Unander, G. L. Webster, and B. S. Blumberg, “Records of usage or assays in Phyllanthus (Euphorbiaceae) I. Subgenera Isocladus, Kirganelia, Cicca and Emblica,” Journal of Ethnopharmacology, vol. 30, no. 3, pp. 233–264, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Sharma, P. Trikha, M. Athar, and S. Raisuddin, “In vitro inhibition of carcinogen-induced mutagenicity by Cassia occidentalis and Emblica officinalis,” Drug and Chemical Toxicology, vol. 23, no. 3, pp. 477–484, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Nandi, G. Talukder, and A. Sharma, “Dietary chemoprevention of clastogenic effects of 3,4-benzo(a)pyrene by Emblica officinalis Gaertn. fruit extract,” British Journal of Cancer, vol. 76, no. 10, pp. 1279–1283, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Dhir, A. K. Roy, A. Sharma, and G. Talukder, “Modification of clastogenicity of lead and aluminium in mouse bone marrow cells by dietary ingestion of Phyllanthus emblica fruit extract,” Mutation Research, vol. 241, no. 3, pp. 305–312, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Sancheti, A. Jindal, R. Kumari, and P. K. Goyal, “Chemopreventive action of Emblica officinalis on skin carcinogenesis in mice,” Asian Pacific Journal of Cancer Prevention, vol. 6, no. 2, pp. 197–201, 2005. View at Google Scholar · View at Scopus
  12. N. V. Rajeshkumar, M. R. Pillai, and R. Kuttan, “Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis,” Journal of Experimental and Clinical Cancer Research, vol. 22, no. 2, pp. 201–212, 2003. View at Google Scholar · View at Scopus
  13. K. J. Jeena, K. L. Joy, and R. Kuttan, “Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis,” Cancer Letters, vol. 136, no. 1, pp. 11–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sultana, S. Ahmed, and T. Jahangir, “Emblica officinalis and hepatocarcinogenesis: a chemopreventive study in Wistar rats,” Journal of Ethnopharmacology, vol. 118, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Hazra, R. Sarkar, S. Biswas, and N. Mandal, “Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis,” BMC Complementary and Alternative Medicine, vol. 10, article 20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Majeed, B. Bhat, A. N. Jadhav, J. S. Srivastava, and K. Nagabhushanam, “Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits—a revisit,” Journal of Agricultural and Food Chemistry, vol. 57, no. 1, pp. 220–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Banu, K. Selvendiran, J. P. V. Singh, and D. Sakthisekaran, “Protective effect of Emblica officinalis ethanolic extract against 7,12-dimethylbenz(a)anthracene (DMBA) induced genotoxicity in Swiss albino mice,” Human and Experimental Toxicology, vol. 23, no. 11, pp. 527–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K.-H. Chen, B.-R. Lin, C.-T. Chien, and C.-H. Ho, “Emblica officinalis gaertn. attentuates N-nitrosodiethylamine-induced apoptosis, autophagy, and inflammation in rat livers,” Journal of Medicinal Food, vol. 14, no. 7-8, pp. 746–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Tasduq, D. M. Mondhe, D. K. Gupta, M. Baleshwar, and R. K. Johri, “Reversal of fibrogenic events in liver by Emblica officinalis (fruit), an Indian natural drug,” Biological and Pharmaceutical Bulletin, vol. 28, no. 7, pp. 1304–1306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Golechha, V. Sarangal, S. Ojha, J. Bhatia, and D. S. Arya, “Anti-inflammatory effect of Emblica officinalis in rodent models of acute and chronic inflammation: involvement of possible mechanisms,” International Journal of Inflammation, vol. 2014, Article ID 178408, 6 pages, 2014. View at Publisher · View at Google Scholar
  21. M. S. Baliga and J. J. Dsouza, “Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer,” European Journal of Cancer Prevention, vol. 20, no. 3, pp. 225–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Yang and P. Liu, “Composition and biological activities of hydrolyzable tannins of fruits of phyllanthus emblica,” Journal of Agricultural and Food Chemistry, vol. 62, no. 3, pp. 529–541, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Wiart, “Note on the relevance of Emblica officinalis Gaertn. for the treatment and prevention of cancer,” European Journal of Cancer Prevention, vol. 22, no. 2, article 198, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Ngamkitidechakul, K. Jaijoy, P. Hansakul, N. Soonthornchareonnon, and S. Sireeratawong, “Antitumour effects of Phyllanthus emblica L.: induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells,” Phytotherapy Research, vol. 24, no. 9, pp. 1405–1413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. S. Adams, S. Phung, N. Yee, N. P. Seeram, L. Li, and S. Chen, “Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway,” Cancer Research, vol. 70, no. 9, pp. 3594–3605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. R. Somasagara, M. Hegde, K. K. Chiruvella, A. Musini, B. Choudhary, and S. C. Raghavan, “Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice,” PLoS ONE, vol. 7, no. 10, Article ID e47021, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. De, C. Papasian, S. Hentges, S. Banerjee, I. Haque, and S. K. Banerjee, “Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors,” PLoS ONE, vol. 8, no. 8, Article ID e72748, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Zhu, J. Wang, Y. Ou, W. Han, and H. Li, “Polyphenol extract of Phyllanthus emblica (PEEP) induces inhibition of cell proliferation and triggers apoptosis in cervical cancer cells,” European Journal of Medical Research, vol. 18, no. 1, article 46, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Shivananjappa and M. K. Joshi, “Influence of Emblica officinalis aqueous extract on growth and antioxidant defense system of human hepatoma cell line (HepG2),” Pharmaceutical Biology, vol. 50, no. 4, pp. 497–505, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Rawal, P. Singh, A. Gupta, and S. Mohanty, “Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster,” BioMed Research International, vol. 2014, Article ID 910290, 7 pages, 2014. View at Publisher · View at Google Scholar
  31. S. Mahata, A. Pandey, S. Shukla et al., “Anticancer activity of Phyllanthus emblica Linn. (Indian Gooseberry): inhibition of transcription factor ap-1 and HPV gene expression in cervical cancer cells,” Nutrition and Cancer, vol. 65, supplement 1, pp. 88–97, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. E. A. Poltanov, A. N. Shikov, H. J. D. Dorman et al., “Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements,” Phytotherapy Research, vol. 23, no. 9, pp. 1309–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Yang, M. Kortesniemi, P. Liu, M. Karonen, and J.-P. Salminen, “Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 60, no. 35, pp. 8672–8683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Zhao, Q. Sun, S. V. Del Rincon, A. Lovato, M. Marques, and M. Witcher, “Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo,” PLoS ONE, vol. 9, no. 3, Article ID e92853, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Chai, H.-J. Lee, A. A. Shaik et al., “Penta-O-galloyl-β-D-glucose induces G1 arrest and DNA replicative S-phase arrest independently of P21 cyclin-dependent kinase inhibitor 1A, P27 cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple-negative xenograft growth,” Breast Cancer Research, vol. 12, no. 5, article R67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Spagnuolo, M. Russo, S. Bilotto, I. Tedesco, B. Laratta, and G. L. Russo, “Dietary polyphenols in cancer prevention: the example of the flavonoid quercetin in leukemia,” Annals of the New York Academy of Sciences, vol. 1259, no. 1, pp. 95–103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Steiner, J. M. Davis, J. L. McClellan et al., “Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer,” Cancer Biology & Therapy, vol. 15, no. 11, pp. 1456–1467, 2014. View at Publisher · View at Google Scholar
  38. S. Cheng, N. Gao, Z. Zhang et al., “Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax,” Clinical Cancer Research, vol. 16, no. 23, pp. 5679–5691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Galano, M. Francisco Marquez, and A. Pérez-González, “Ellagic acid: an unusually versatile protector against oxidative stress,” Chemical Research in Toxicology, vol. 27, no. 5, pp. 904–918, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Singh, A. Jha, A. Kumar, N. Hettiarachchy, A. K. Rai, and D. Sharma, “Influence of the solvents on the extraction of major phenolic compounds (punicalagin, ellagic acid and gallic acid) and their antioxidant activities in pomegranate aril,” Journal of Food Science and Technology, vol. 51, no. 9, pp. 2070–2077, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Manosroi, P. Jantrawut, H. Akazawa, T. Akihisa, and J. Manosroi, “Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae),” Natural Product Research, vol. 24, no. 20, pp. 1915–1926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. S. Makena and K.-T. Chung, “Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity,” Food and Chemical Toxicology, vol. 45, no. 10, pp. 1899–1909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Dipple, “DNA adducts of chemical carcinogens,” Carcinogenesis, vol. 16, no. 3, pp. 437–441, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Piva, L. Penolazzi, M. Borgatti et al., “Apoptosis of human primary osteoclasts treated with molecules targeting nuclear factor-kappaB,” Annals of the New York Academy of Sciences, vol. 1171, pp. 448–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H.-H. Ho, C.-S. Chang, W.-C. Ho, S.-Y. Liao, C.-H. Wu, and C.-J. Wang, “Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals,” Food and Chemical Toxicology, vol. 48, no. 8-9, pp. 2508–2516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. H. Ho, C.-S. Chang, W.-C. Ho, S.-Y. Liao, W.-L. Lin, and C.-J. Wang, “Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-kappaB activity,” Toxicology and Applied Pharmacology, vol. 266, no. 1, pp. 76–85, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Penolazzi, I. Lampronti, M. Borgatti et al., “Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis,” BMC Complementary and Alternative Medicine, vol. 8, article 59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Edderkaoui, I. Odinokova, I. Ohno et al., “Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells,” World Journal of Gastroenterology, vol. 14, no. 23, pp. 3672–3680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Anitha, R. V. Priyadarsini, K. Kavitha, P. Thiyagarajan, and S. Nagini, “Ellagic acid coordinately attenuates Wnt/beta-catenin and NF-kappaB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis,” European Journal of Nutrition, vol. 52, no. 1, pp. 75–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Jia, H. Jin, J. Zhou et al., “A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways,” BMC Complementary and Alternative Medicine, vol. 13, article 33, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Gasparini, C. Celeghini, L. Monasta, and G. Zauli, “NF-kappaB pathways in hematological malignancies,” Cellular and Molecular Life Sciences, vol. 71, no. 11, pp. 2083–2102, 2014. View at Publisher · View at Google Scholar
  52. H.-M. Shen and V. Tergaonkar, “NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy,” Apoptosis, vol. 14, no. 4, pp. 348–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Hoesel and J. A. Schmid, “The complexity of NF-κB signaling in inflammation and cancer,” Molecular Cancer, vol. 12, no. 1, article 86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. C.-J. Yang, C.-S. Wang, J.-Y. Hung et al., “Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model,” Lung Cancer, vol. 66, no. 2, pp. 162–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. I. M. Adcock, C. R. Brown, O. Kwon, and P. J. Barnes, “Oxidative stress induces NFκB DNA binding and inducible NOS mRNA in human epithelial cells,” Biochemical and Biophysical Research Communications, vol. 199, no. 3, pp. 1518–1524, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. H. J. Kim, J. Kim, K. S. Kang, K. T. Lee, and H. O. Yang, “Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells,” Biomolecules & Therapeutics, vol. 22, no. 4, pp. 275–281, 2014. View at Publisher · View at Google Scholar
  57. D. M. Benbrook and A. Long, “Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis,” Experimental Oncology, vol. 34, no. 3, pp. 286–297, 2012. View at Google Scholar · View at Scopus
  58. L. T. Lee, Y. T. Huang, J. J. Hwang et al., “Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells,” Anticancer Research, vol. 22, no. 3, pp. 1615–1627, 2002. View at Google Scholar · View at Scopus
  59. F. A. Bhat, G. Sharmila, S. Balakrishnan et al., “Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway,” The Journal of Nutritional Biochemistry, vol. 25, no. 11, pp. 1132–1139, 2014. View at Publisher · View at Google Scholar
  60. E. H. Walker, M. E. Pacold, O. Perisic et al., “Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine,” Molecular Cell, vol. 6, no. 4, pp. 909–919, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, “Specificity and mechanism of action of some commonly used protein kinase inhibitors,” Biochemical Journal, vol. 351, no. 1, pp. 95–105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Marienfeld, L. Tadlock, Y. Yamagiwa, and T. Patel, “Inhibition of cholangiocarcinoma growth by tannic acid,” Hepatology, vol. 37, no. 5, pp. 1097–1104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Wang, Z.-Y. Wang, S.-L. Mo et al., “Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer,” Breast Cancer Research and Treatment, vol. 134, no. 3, pp. 943–955, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. M. V. Vadhanam, S. Ravoori, F. Aqil, and R. C. Gupta, “Chemoprevention of mammary carcinogenesis by sustained systemic delivery of ellagic acid,” European Journal of Cancer Prevention, vol. 20, no. 6, pp. 484–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Naiki-Ito, T. Chewonarin, M. Tang et al., “Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis,” The Prostate, vol. 75, no. 2, pp. 151–160, 2015. View at Publisher · View at Google Scholar
  66. D. K.-P. Hau, G.-Y. Zhu, A. K.-M. Leung et al., “In vivo anti-tumour activity of corilagin on Hep3B hepatocellular carcinoma,” Phytomedicine, vol. 18, no. 1, pp. 11–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. C. Ji, W. H. Hsu, J. S. Yang, and et al, “Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo,” Journal of Agricultural and Food Chemistry, vol. 57, no. 16, pp. 7596–7604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. C.-Z. Liang, X. Zhang, H. Li et al., “Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways,” Cancer Biotherapy and Radiopharmaceuticals, vol. 27, no. 10, pp. 701–710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Angst, J. L. Park, A. Moro et al., “The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo,” Pancreas, vol. 42, no. 2, pp. 223–229, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. D. R. Ferry, A. Smith, J. Malkhandi et al., “Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition,” Clinical Cancer Research, vol. 2, no. 4, pp. 659–668, 1996. View at Google Scholar · View at Scopus