Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 2592935, 9 pages
http://dx.doi.org/10.1155/2016/2592935
Review Article

The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria

Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing 400038, China

Received 4 December 2015; Revised 20 March 2016; Accepted 17 April 2016

Academic Editor: Qian Liu

Copyright © 2016 Jie Qu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. van Asch, M. J. Luitse, G. J. Rinkel, I. van der Tweel, A. Algra, and C. J. Klijn, “Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis,” The Lancet Neurology, vol. 9, no. 2, pp. 167–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. L. Feigin, C. M. Lawes, D. A. Bennett, S. L. Barker-Collo, and V. Parag, “Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review,” The Lancet Neurology, vol. 8, no. 4, pp. 355–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. F. Keep, Y. Hua, and G. Xi, “Intracerebral haemorrhage: mechanisms of injury and therapeutic targets,” The Lancet Neurology, vol. 11, no. 8, pp. 720–731, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Ray, B.-W. Huang, and Y. Tsuji, “Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling,” Cellular Signalling, vol. 24, no. 5, pp. 981–990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. K. J. Davies, “Oxidative stress: the paradox of aerobic life,” Biochemical Society Symposium, vol. 61, pp. 1–31, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Han, S.-J. Ding, T. Wu, and Y.-L. Zhu, “Correlation of free radical level and apoptosis after intracerebral hemorrhage in rats,” Neuroscience Bulletin, vol. 24, no. 6, pp. 351–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Katsu, K. Niizuma, H. Yoshioka, N. Okami, H. Sakata, and P. H. Chan, “Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo,” Journal of Cerebral Blood Flow & Metabolism, vol. 30, no. 12, pp. 1939–1950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. B. Zorov, M. Juhaszova, and S. J. Sollott, “Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release,” Physiological Reviews, vol. 94, no. 3, pp. 909–950, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. R. Robinson, T. N. Dang, R. Dringen, and G. M. Bishop, “Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke,” Redox Report, vol. 14, no. 6, pp. 228–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. X.-Y. Xiong, J. Wang, Z.-M. Qian, and Q.-W. Yang, “Iron and intracerebral hemorrhage: from mechanism to translation,” Translational Stroke Research, vol. 5, no. 4, pp. 429–441, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Chen, J. Tang, L. Tan et al., “Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating iron accumulation,” Stroke, vol. 46, no. 10, pp. 2902–2908, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Wu, T. Wu, X. Xu, J. Wang, and J. Wang, “Iron toxicity in mice with collagenase-induced intracerebral hemorrhage,” Journal of Cerebral Blood Flow & Metabolism, vol. 31, no. 5, pp. 1243–1250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. F. Regan, M. Chen, Z. Li, X. Zhang, L. Benvenisti-Zarom, and J. Chen-Roetling, “Neurons lacking iron regulatory protein-2 are highly resistant to the toxicity of hemoglobin,” Neurobiology of Disease, vol. 31, no. 2, pp. 242–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. Clark, M. Loftspring, W. L. Wurster et al., “Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage,” Acta Neurochirurgica, Supplementum, vol. 105, pp. 7–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Sharp, D. Z. Liu, X. Zhan, and B. P. Ander, “Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src,” Acta Neurochirurgica. Supplementum, vol. 105, pp. 43–46, 2008. View at Publisher · View at Google Scholar
  18. D. C. Joshi, B. P. Tewari, M. Singh, P. G. Joshi, and N. B. Joshi, “AMPA receptor activation causes preferential mitochondrial Ca2+ load and oxidative stress in motor neurons,” Brain Research, vol. 1616, pp. 1–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Mracsko and R. Veltkamp, “Neuroinflammation after intracerebral hemorrhage,” Frontiers in Cellular Neuroscience, vol. 8, article 388, 2014. View at Publisher · View at Google Scholar
  20. J. Wang and S. E. Tsirka, “Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage,” Stroke, vol. 36, no. 3, pp. 613–618, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. B. Hampton, A. J. Kettle, and C. C. Winterbourn, “Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing,” Blood, vol. 92, no. 9, pp. 3007–3017, 1998. View at Google Scholar · View at Scopus
  22. H. X. Nguyen, T. J. O'Barr, and A. J. Anderson, “Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α,” Journal of Neurochemistry, vol. 102, no. 3, pp. 900–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Bernardi, A. Rasola, M. Forte, and G. Lippe, “The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology,” Physiological Reviews, vol. 95, no. 4, pp. 1111–1155, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Ma, S. Chen, Q. Hu, H. Feng, J. H. Zhang, and J. Tang, “NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage,” Annals of Neurology, vol. 75, no. 2, pp. 209–219, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wang, T. Mori, T. Sumii, and E. H. Lo, “Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress,” Stroke, vol. 33, no. 7, pp. 1882–1888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Goldstein, Z.-P. Teng, E. Zeserson, M. Patel, and R. F. Regan, “Hemin induces an iron-dependent, oxidative injury to human neuron-like cells,” Journal of Neuroscience Research, vol. 73, no. 1, pp. 113–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Dixon, K. M. Lemberg, M. R. Lamprecht et al., “Ferroptosis: an iron-dependent form of nonapoptotic cell death,” Cell, vol. 149, no. 5, pp. 1060–1072, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Chang, W. Dong, M. Zhang et al., “Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model,” Journal of Molecular Neuroscience, vol. 52, no. 2, pp. 242–249, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Degterev, Z. Huang, M. Boyce et al., “Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury,” Nature Chemical Biology, vol. 1, no. 2, pp. 112–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Laird, C. Wakade, C. H. Alleyne Jr., and K. M. Dhandapani, “Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes,” Free Radical Biology and Medicine, vol. 45, no. 8, pp. 1103–1114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Ballabh, A. Braun, and M. Nedergaard, “The blood-brain barrier: an overview: structure, regulation, and clinical implications,” Neurobiology of Disease, vol. 16, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Chang, B. A. Emanuel, W. J. Mack, G. Tsivgoulis, and A. V. Alexandrov, “Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage,” Journal of Stroke and Cerebrovascular Diseases, vol. 23, no. 10, pp. 2498–2505, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. B. M. Hybertson, B. Gao, S. K. Bose, and J. M. McCord, “Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation,” Molecular Aspects of Medicine, vol. 32, no. 4–6, pp. 234–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Zhao, G. Sun, S.-M. Ting et al., “Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance,” Journal of Neurochemistry, vol. 133, no. 1, pp. 144–152, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Wang, J. Fields, C. Zhao et al., “Role of Nrf2 in protection against intracerebral hemorrhage injury in mice,” Free Radical Biology and Medicine, vol. 43, no. 3, pp. 408–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Shang, D. Yang, W. Zhang et al., “Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit,” Free Radical Research, vol. 47, no. 5, pp. 368–375, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. C. E. Guerrero-Beltrán, M. Calderón-Oliver, J. Pedraza-Chaverri, and Y. I. Chirino, “Protective effect of sulforaphane against oxidative stress: recent advances,” Experimental and Toxicologic Pathology, vol. 64, no. 5, pp. 503–508, 2012. View at Publisher · View at Google Scholar
  38. C. F. Chang, S. Cho, and J. Wang, “(-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways,” Annals of Clinical and Translational Neurology, vol. 1, no. 4, pp. 258–271, 2014. View at Publisher · View at Google Scholar
  39. S. Sukumari-Ramesh and C. H. Alleyne, “Post-injury administration of tert-butylhydroquinone attenuates acute neurological injury after intracerebral hemorrhage in mice,” Journal of Molecular Neuroscience, vol. 58, no. 4, pp. 525–531, 2016. View at Publisher · View at Google Scholar
  40. X.-R. Zhao, N. Gonzales, and J. Aronowski, “Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB,” CNS Neuroscience and Therapeutics, vol. 21, no. 4, pp. 357–366, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Y. Park, I. J. Cho, and S. G. Kim, “Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid X receptor heterodimer,” Cancer Research, vol. 64, no. 10, pp. 3701–3713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. C. Thal, M. Heinemann, C. Luh, D. Pieter, C. Werner, and K. Engelhard, “Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-γ-independent mechanisms,” Journal of Neurotrauma, vol. 28, no. 6, pp. 983–993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-H. Yi, S.-W. Park, N. Brooks, B. T. Lang, and R. Vemuganti, “PPARγ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms,” Brain Research, vol. 1244, pp. 164–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Cherubini, C. Ruggiero, M. C. Polidori, and P. Mecocci, “Potential markers of oxidative stress in stroke,” Free Radical Biology and Medicine, vol. 39, no. 7, pp. 841–852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. C. Chen, C. M. Chen, J. L. Liu, S. T. Chen, M. L. Cheng, and D. T. Chiu, “Oxidative markers in spontaneous intracerebral hemorrhage: leukocyte 8-hydroxy-2′-deoxyguanosine as an independent predictor of the 30-day outcome,” Journal of Neurosurgery, vol. 115, no. 6, pp. 1184–1190, 2011. View at Publisher · View at Google Scholar
  46. C. J. Weir, S. W. Muir, M. R. Walters, and K. R. Lees, “Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke,” Stroke, vol. 34, no. 8, pp. 1951–1956, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Wu, Q. Jia, G. Liu et al., “Decreased uric acid levels correlate with poor outcomes in acute ischemic stroke patients, but not in cerebral hemorrhage patients,” Journal of Stroke and Cerebrovascular Diseases, vol. 23, no. 3, pp. 469–475, 2014. View at Publisher · View at Google Scholar
  48. M. C. Polidori, P. Mecocci, and B. Frei, “Plasma vitamin C levels are decreased and correlated with brain damage in patients with intracranial hemorrhage or head trauma,” Stroke, vol. 32, no. 4, pp. 898–902, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Hua, R. F. Keep, J. T. Hoff, and G. Xi, “Deferoxamine therapy for intracerebral hemorrhage,” in Cerebral Hemorrhage, L. F. Zhou, X. C. Chen, and F. P. Huang, Eds., vol. 105 of Acta Neurochirurgica Supplement, pp. 3–6, 2008. View at Google Scholar
  50. G. Wang, W. Hu, Q. Tang et al., “Effect comparison of both iron chelators on outcomes, iron deposit, and iron transporters after intracerebral hemorrhage in rats,” Molecular Neurobiology, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Masuda, H. Hida, Y. Kanda et al., “Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat,” Journal of Neuroscience Research, vol. 85, no. 1, pp. 213–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. “Retraction. Inhibition of NADPH oxidase attenuates vasospasm after experimental subarachnoid hemorrhage in rats,” Stroke, vol. 42, no. 7, p. 2117, 2011. View at Publisher · View at Google Scholar
  53. M. T. Zia, A. Csiszar, N. Labinskyy et al., “Oxidative-nitrosative stress in a rabbit pup model of germinal matrix hemorrhage: role of NAD(P)H oxidase,” Stroke, vol. 40, no. 6, pp. 2191–2198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Titova, R. P. Ostrowski, L. C. Sowers, J. H. Zhang, and J. Tang, “Effects of apocynin and ethanol on intracerebral haemorrhage-induced brain injury in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 9, pp. 845–850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Hama, Y. Ishihara, M. Watanabe, S. Danjo, Y. Nakamura, and K. Itoh, “Effects of sulfaphenazole after collagenase-induced experimental intracerebral hemorrhage in rats,” Biological and Pharmaceutical Bulletin, vol. 35, no. 10, pp. 1849–1853, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. F. M. Donovan, C. J. Pike, C. W. Cotman, and D. D. Cunningham, “Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities,” The Journal of Neuroscience, vol. 17, no. 14, pp. 5316–5326, 1997. View at Google Scholar
  57. D.-Z. Liu, B. P. Ander, H. Xu et al., “Blood-brain barrier breakdown and repair by Src after thrombin-induced injury,” Annals of Neurology, vol. 67, no. 4, pp. 526–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. T. D. Ardizzone, X. Zhan, B. P. Ander, and F. R. Sharp, “Src kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage,” Stroke, vol. 38, no. 5, pp. 1621–1625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. D.-Z. Liu, X.-Y. Cheng, B. P. Ander et al., “Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons,” Neurobiology of Disease, vol. 30, no. 2, pp. 201–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Ueda, T. Masuda, A. Ishida et al., “Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats,” Journal of Neuroscience Research, vol. 92, no. 11, pp. 1499–1508, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. R. E. Hartman, H. A. Rojas, T. Lekic et al., “Long-term effects of melatonin after intracerebral hemorrhage in rats,” in Cerebral Hemorrhage, vol. 105 of Acta Neurochirurgica Supplementum, pp. 99–100, Springer, Berlin, Germany, 2008. View at Publisher · View at Google Scholar
  62. T. Lekic, R. Hartman, H. Rojas et al., “Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats,” Journal of Neurotrauma, vol. 27, no. 3, pp. 627–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Wang, C. Ma, C.-J. Meng et al., “Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model,” Journal of Pineal Research, vol. 53, no. 2, pp. 129–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Ohsawa, M. Ishikawa, K. Takahashi et al., “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals,” Nature Medicine, vol. 13, no. 6, pp. 688–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Manaenko, T. Lekic, Q. Ma, J. H. Zhang, and J. Tang, “Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice,” Critical Care Medicine, vol. 41, no. 5, pp. 1266–1275, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. Z.-Z. Duan, X.-L. Zhou, Y.-H. Li, F. Zhang, F.-Y. Li, and Q. Su-Hua, “Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway,” Journal of Receptors and Signal Transduction, vol. 35, no. 6, pp. 523–529, 2015. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Ohwada, H. Takeda, M. Yamazaki et al., “Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats,” Journal of Clinical Biochemistry and Nutrition, vol. 42, no. 1, pp. 29–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. A. K. Singh, S. K. Pandey, and G. Naresh Kumar, “Pyrroloquinoline quinone-secreting probiotic escherichia coli nissle 1917 ameliorates ethanol-induced oxidative damage and hyperlipidemia in rats,” Alcoholism: Clinical and Experimental Research, vol. 38, no. 7, pp. 2127–2137, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Tao, J. S. Karliner, U. Simonis et al., “Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes,” Biochemical and Biophysical Research Communications, vol. 363, no. 2, pp. 257–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Lu, J. Shen, X. Song et al., “Protective effect of pyrroloquinoline quinone (PQQ) in rat model of intracerebral hemorrhage,” Cellular and Molecular Neurobiology, vol. 35, no. 7, pp. 921–930, 2015. View at Publisher · View at Google Scholar
  71. P. Chonpathompikunlert, C.-H. Fan, Y. Ozaki, T. Yoshitomi, C.-K. Yeh, and Y. Nagasaki, “Redox nanoparticle treatment protects against neurological deficit in focused ultrasound-induced intracerebral hemorrhage,” Nanomedicine, vol. 7, no. 7, pp. 1029–1043, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Otomo, H. Tohgi, K. Kogure et al., “Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters,” Cerebrovascular Diseases, vol. 15, no. 3, pp. 222–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Shang, D. Cui, D. Yang, S. Liang, W. Zhang, and W. Zhao, “The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage,” Journal of Stroke and Cerebrovascular Diseases, vol. 24, no. 1, pp. 215–222, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Nakamura, Y. Kuroda, S. Yamashita et al., “Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage,” Stroke, vol. 39, no. 2, pp. 463–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Zhao and Z. Liu, “Beneficial effects of edaravone on the expression of serum matrix metalloproteinase-9 after cerebral hemorrhage,” Neurosciences, vol. 19, no. 2, pp. 106–110, 2014. View at Google Scholar · View at Scopus
  76. J. Yang, M. Liu, J. Zhou, S. Zhang, S. Lin, and H. Zhao, “Edaravone for acute intracerebral haemorrhage,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD007755, 2011. View at Google Scholar · View at Scopus
  77. P. D. Lyden, A. Shuaib, K. R. Lees et al., “Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT trial,” Stroke, vol. 38, no. 8, pp. 2262–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus