Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 2986796, 10 pages
http://dx.doi.org/10.1155/2016/2986796
Review Article

Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

1Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
2Department of Neuroscience, University of Parma Medical School, 43100 Parma, Italy

Received 27 November 2015; Revised 4 January 2016; Accepted 6 January 2016

Academic Editor: Felipe Dal Pizzol

Copyright © 2016 Lucio G. Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. USDA (United States Department of Agriculture), USDA Database for the Flavonoid Content of Selected Foods, USDA, Beltsville Human Nutrition Research Center, Beltsville, Md, USA, 2003.
  2. D. Del Rio, A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges, and A. Crozier, “Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases,” Antioxidants & Redox Signaling, vol. 18, no. 14, pp. 1818–1892, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Kawabata, R. Mukai, and A. Ishisaka, “Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability,” Food & Function, vol. 6, no. 5, pp. 1399–1417, 2015. View at Publisher · View at Google Scholar
  4. H. Nishimuro, H. Ohnishi, M. Sato et al., “Estimated daily intake and seasonal food sources of quercetin in Japan,” Nutrients, vol. 7, no. 4, pp. 2345–2358, 2015. View at Publisher · View at Google Scholar
  5. M. Harwood, B. Danielewska-Nikiel, J. F. Borzelleca, G. W. Flamm, G. M. Williams, and T. C. Lines, “A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties,” Food and Chemical Toxicology, vol. 45, no. 11, pp. 2179–2205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Guo and R. S. Bruno, “Endogenous and exogenous mediators of quercetin bioavailability,” The Journal of Nutritional Biochemistry, vol. 26, no. 3, pp. 201–210, 2015. View at Publisher · View at Google Scholar
  7. V. C. J. de Boer, A. A. Dihal, H. van der Woude et al., “Tissue distribution of quercetin in rats and pigs,” The Journal of Nutrition, vol. 135, no. 7, pp. 1718–1725, 2005. View at Google Scholar · View at Scopus
  8. C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Rémésy, “Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies,” The American Journal of Clinical Nutrition, vol. 81, no. 1, supplement, pp. 230S–242S, 2005. View at Google Scholar · View at Scopus
  9. J. A. Conquer, G. Maiani, E. Azzini, A. Raguzzini, and B. J. Holub, “Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects,” The Journal of Nutrition, vol. 128, no. 3, pp. 593–597, 1998. View at Google Scholar · View at Scopus
  10. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” The American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  11. R. A. Shanely, A. M. Knab, D. C. Nieman, F. Jin, S. R. McAnulty, and M. J. Landram, “Quercetin supplementation does not alter antioxidant status in humans,” Free Radical Research, vol. 44, no. 2, pp. 224–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. S. Kelly, “Quercetin. Monograph,” Alternative Medicine Review, vol. 16, no. 2, pp. 172–194, 2011. View at Google Scholar
  13. J.-H. Moon, T. Tsushida, K. Nakahara, and J. Terao, “Identification of quercetin 3-O-β-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1274–1285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Shirai, Y. Kawai, R. Yamanishi, T. Kinoshita, H. Chuman, and J. Terao, “Effect of a conjugated quercetin metabolite, quercetin 3-glucuronide, on lipid hydroperoxide-dependent formation of reactive oxygen species in differentiated PC-12 cells,” Free Radical Research, vol. 40, no. 10, pp. 1047–1053, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-L. Yeh, C.-L. Yeh, S.-T. Chan, and C.-H. Chuang, “Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells,” Planta Medica, vol. 77, no. 10, pp. 992–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Boesch-Saadatmandi, A. Loboda, A. E. Wagner et al., “Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155,” Journal of Nutritional Biochemistry, vol. 22, no. 3, pp. 293–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ruotolo, L. Calani, F. Brighenti, A. Crozier, S. Ottonello, and D. Del Rio, “Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems,” Archives of Biochemistry and Biophysics, vol. 559, pp. 62–67, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Cho, S.-Y. Chang, D.-B. Kim, P. W. Needs, Y.-H. Jo, and M.-J. Kim, “Effects of physiological quercetin metabolites on interleukin-1β-induced inducible NOS expression,” Journal of Nutritional Biochemistry, vol. 23, no. 11, pp. 1394–1402, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Fiorani, A. Accorsi, and O. Cantoni, “Human red blood cells as a natural flavonoid reservoir,” Free Radical Research, vol. 37, no. 12, pp. 1331–1338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Faria, D. Pestana, D. Teixeira et al., “Flavonoid transport across RBE4 cells: a blood-brain barrier model,” Cellular and Molecular Biology Letters, vol. 15, no. 2, pp. 234–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ishisaka, S. Ichikawa, H. Sakakibara et al., “Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. 1329–1336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Schaffer and B. Halliwell, “Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations,” Genes and Nutrition, vol. 7, no. 2, pp. 99–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Huebbe, A. E. Wagner, C. Boesch-Saadatmandi, F. Sellmer, S. Wolffram, and G. Rimbach, “Effect of dietary quercetin on brain quercetin levels and the expression of antioxidant and Alzheimer's disease relevant genes in mice,” Pharmacological Research, vol. 61, no. 3, pp. 242–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Russo, C. Spagnuolo, I. Tedesco, S. Bilotto, and G. L. Russo, “The flavonoid quercetin in disease prevention and therapy: facts and fancies,” Biochemical Pharmacology, vol. 83, no. 1, pp. 6–15, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Das, A. K. Mandal, A. Ghosh, S. Panda, N. Das, and S. Sarkar, “Nanoparticulated quercetin in combating age related cerebral oxidative injury,” Current Aging Science, vol. 1, no. 3, pp. 169–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Dhawan, R. Kapil, and B. Singh, “Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 342–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Ferri, D. Angelino, L. Gennari et al., “Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol,” Food & Function, vol. 6, no. 2, pp. 394–400, 2015. View at Publisher · View at Google Scholar
  28. A. W. Boots, G. R. M. M. Haenen, and A. Bast, “Health effects of quercetin: from antioxidant to nutraceutical,” European Journal of Pharmacology, vol. 585, no. 2-3, pp. 325–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Ossola, T. M. Kääriäinen, and P. T. Männistö, “The multiple faces of quercetin in neuroprotection,” Expert Opinion on Drug Safety, vol. 8, no. 4, pp. 397–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Dajas, “Life or death: neuroprotective and anticancer effects of quercetin,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 383–396, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. L. D. Mercer, B. L. Kelly, M. K. Horne, and P. M. Beart, “Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures,” Biochemical Pharmacology, vol. 69, no. 2, pp. 339–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Vauzour, G. Ravaioli, K. Vafeiadou, A. Rodriguez-Mateos, C. Angeloni, and J. P. E. Spencer, “Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: implications for Parkinson's disease and protection by polyphenols,” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 145–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Arredondo, C. Echeverry, J. A. Abin-Carriquiry et al., “After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult,” Free Radical Biology and Medicine, vol. 49, no. 5, pp. 738–747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. G. Costa, L. Tait, R. De Laat et al., “Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: a mechanism of neuroprotection?” Neurochemical Research, vol. 38, no. 9, pp. 1809–1818, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. K. B. Magalingam, A. Radhakrishnan, P. Ramdas, and N. Haleagrahara, “Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson's disease,” Journal of Molecular Neuroscience, vol. 55, no. 3, pp. 609–617, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Waseem and S. Parvez, “Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin,” Protoplasma, 2015. View at Publisher · View at Google Scholar
  37. M. A. Ansari, H. M. Abdul, G. E. Joshi, W. O. Opii, and D. A. Butterfield, “Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer's disease,” Journal of Nutritional Biochemistry, vol. 20, no. 4, pp. 269–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Hu, M. Wang, W.-H. Chen et al., “Quercetin relieves chronic lead exposure-induced impairment of synaptic plasticity in rat dentate gyrus in vivo,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 378, no. 1, pp. 43–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Bavithra, K. Selvakumar, R. P. Kumari, G. Krishnamoorthy, P. Venkataraman, and J. Arunakaran, “Polychlorinated biphenyl (PCBs)-induced oxidative stress plays a critical role on cerebellar dopaminergic receptor expression: ameliorative role of quercetin,” Neurotoxicity Research, vol. 21, no. 2, pp. 149–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. G. R. M. Barcelos, D. Grotto, J. M. Serpeloni et al., “Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats,” Archives of Toxicology, vol. 85, no. 9, pp. 1151–1157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Lv, T. Hong, Z. Yang et al., “Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson's disease,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 928643, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Lakroun, M. Kebieche, A. Lahouel, D. Zama, F. Desor, and R. Soulimani, “Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat,” Environmental Science and Pollution Research, vol. 22, no. 10, pp. 7776–7781, 2015. View at Publisher · View at Google Scholar
  43. S. Sachdeva, S. C. Pant, P. Kushwaha, R. Bhargava, and S. J. S. Flora, “Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants,” Food and Chemical Toxicology, vol. 82, pp. 64–71, 2015. View at Publisher · View at Google Scholar
  44. I. C. W. Arts and P. C. H. Hollman, “Polyphenols and disease risk in epidemiologic studies,” The American Journal of Clinical Nutrition, vol. 81, supplement, pp. 317S–325S, 2005. View at Google Scholar · View at Scopus
  45. D. Vauzour, “Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 914273, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. S. Bhullar and H. P. V. Rupasinghe, “Polyphenols: multipotent therapeutic agents in neurodegenerative diseases,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 891748, 18 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. S.-F. Xia, Z.-X. Xie, Y. Qiao et al., “Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress,” Physiology and Behavior, vol. 138, pp. 325–331, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Zhang, B. Yi, J. Ma et al., “Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage,” Neurochemical Research, vol. 40, no. 1, pp. 195–203, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Arikan, I. Ersan, T. Karaca et al., “Quercetin protects the retina by reducing apoptosis due to ischemia-reperfusion injury in a rat model,” Arquivos Brasileiros de Oftalmologia, vol. 78, no. 2, pp. 100–104, 2015. View at Publisher · View at Google Scholar
  50. A. M. Sabogal-Guáqueta, J. I. Muñoz-Manco, J. R. Ramírez-Pineda, M. Lamprea-Rodriguez, E. Osorio, and G. P. Cardona-Gómez, “The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice,” Neuropharmacology, vol. 93, pp. 134–145, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. K. M. Denny Joseph and Muralidhara, “Enhanced neuroprotective effect of fish oil in combination with quercetin against 3-nitropropionic acid induced oxidative stress in rat brain,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 40, no. 1, pp. 83–92, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. K. M. Denny Joseph and Muralidhara, “Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: relevance to Parkinson’s disease,” Neurochemical Research, vol. 40, no. 5, pp. 894–905, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Martin and M. S. Grotewiel, “Oxidative damage and age-related functional declines,” Mechanisms of Ageing and Development, vol. 127, no. 5, pp. 411–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A.-M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 963520, 14 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, “Mitochondria, oxidative stress and cell death,” Apoptosis, vol. 12, no. 5, pp. 913–922, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. D. A. Linseman, “Targeting oxidative stress for neuroprotection,” Antioxidants and Redox Signaling, vol. 11, no. 3, pp. 421–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. P. E. Spencer, “Flavonoids and brain health: multiple effects underpinned by common mechanisms,” Genes & Nutrition, vol. 4, no. 4, pp. 243–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. L. L. Saw, Y. Guo, A. Y. Yang et al., “The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway,” Food and Chemical Toxicology, vol. 72, pp. 303–311, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Halliwell, J. Rafter, and A. Jenner, “Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?” The American Journal of Clinical Nutrition, vol. 81, no. 1, supplement, pp. 268S–276S, 2005. View at Google Scholar · View at Scopus
  61. C. G. Fraga, M. Galleano, S. V. Verstraeten, and P. I. Oteiza, “Basic biochemical mechanisms behind the health benefits of polyphenols,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 435–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Halliwell, “Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 107–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Halliwell, “The antioxidant paradox: less paradoxical now?” British Journal of Clinical Pharmacology, vol. 75, no. 3, pp. 637–644, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Calabrese, C. Cornelius, A. T. Dinkova-Kostova, E. J. Calabrese, and M. P. Mattson, “Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders,” Antioxidants and Redox Signaling, vol. 13, no. 11, pp. 1763–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. E. J. Calabrese, K. A. Bachmann, A. J. Bailer, P. M. Bolger et al., “Biological stress response terminology: integrating the concepts of adaptive response and pre-conditioning stress with hormetic dose-response framework,” Toxicology and Applied Pharmacology, vol. 222, no. 1, pp. 122–128, 2007. View at Publisher · View at Google Scholar
  66. A. Y. Shih, S. Imbeault, V. Barakauskas et al., “Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo,” Journal of Biological Chemistry, vol. 280, no. 24, pp. 22925–22936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Liang, C. Gao, M. Luo et al., “Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway,” Journal of Agricultural and Food Chemistry, vol. 61, no. 11, pp. 2755–2761, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Gan and J. A. Johnson, “Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, vol. 1842, no. 8, pp. 1208–1218, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Nouhi, S. K. Tusi, A. Abdi, and F. Khodagholi, “Dietary supplementation with tBHQ, an NRF2 stabilizer molecule, confers neuroprotection against apoptosis in amyloid-β-injected rat,” Neurochemical Research, vol. 36, no. 5, pp. 870–878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. A. B. Granado-Serrano, M. A. Martín, L. Bravo, L. Goya, and S. Ramos, “Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38,” Chemico-Biological Interactions, vol. 195, no. 2, pp. 154–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. M. P. Mattson and A. Cheng, “Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses,” Trends in Neurosciences, vol. 29, no. 11, pp. 632–639, 2006. View at Publisher · View at Google Scholar
  72. D. I. Draganov, J. F. Teiber, A. Speelman, Y. Osawa, R. Sunahara, and B. N. La Du, “Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities,” Journal of Lipid Research, vol. 46, no. 6, pp. 1239–1247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. C. J. Ng, N. Bourquard, V. Grijalva et al., “Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2,” The Journal of Biological Chemistry, vol. 281, no. 40, pp. 29491–29500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. C. J. Ng, D. J. Wadleigh, A. Gangopadhyay et al., “Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 44444–44449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Marsillach, B. Mackness, M. Mackness et al., “Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues,” Free Radical Biology and Medicine, vol. 45, no. 2, pp. 146–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Giordano, T. B. Cole, C. E. Furlong, and L. G. Costa, “Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role?” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 369–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. S. L. Primo-Parmo, R. C. Sorenson, J. Teiber, and B. N. La Du, “The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family,” Genomics, vol. 33, no. 3, pp. 498–507, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Giordano, L. Tait, C. E. Furlong, T. B. Cole, T. J. Kavanagh, and L. G. Costa, “Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase-2 expression,” Free Radical Biology and Medicine, vol. 58, pp. 98–108, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Devarajan, N. Bourquard, S. Hama et al., “Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 341–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. L. G. Costa, R. de Laat, K. Dao, C. Pellacani, T. B. Cole, and C. E. Furlong, “Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection,” NeuroToxicology, vol. 43, pp. 3–9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Horke, I. Witte, P. Wilgenbus, M. Krüger, D. Strand, and U. Förstermann, “Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation,” Circulation, vol. 115, no. 15, pp. 2055–2064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Altenhöfer, I. Witte, J. F. Teiber et al., “One enzyme, two functions. PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity,” The Journal of Biological Chemistry, vol. 285, no. 32, pp. 24398–24403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Fiorani, A. Guidarelli, M. Blasa et al., “Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid,” Journal of Nutritional Biochemistry, vol. 21, no. 5, pp. 397–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Rosenblat, D. Draganov, C. E. Watson, C. L. Bisgaier, B. N. La Du, and M. Aviram, “Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 468–474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. L. G. Costa, J. Garrick, P. J. Roque, and C. Pellacani, “Nutraceuticals in CNS diseases: potential mechanisms of neuroprotection,” in Nutraceuticals: Efficacy, Safety, and Toxicity, R. C. Gupta, Ed., Elsevier, New York, NY, USA, 2015. View at Google Scholar
  86. C. Boesch-Saadatmandi, R. T. Pospissil, A.-C. Graeser et al., “Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes—role of quercetin metabolism,” International Journal of Molecular Sciences, vol. 10, no. 9, pp. 4168–4177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Y.-F. Chang, Y.-C. Hsu, H.-F. Hung et al., “Quercetin induces oxidative stress and potentiates the apoptotic action of 2-methoxyestradiol in human hepatoma cells,” Nutrition and Cancer, vol. 61, no. 5, pp. 735–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. B. Granado-Serrano, M. A. Martín, L. Bravo, L. Goya, and S. Ramos, “Quercetin modulates NF-κB and AP-1/JNK pathways to induce cell death in human hepatoma cells,” Nutrition and Cancer, vol. 62, no. 3, pp. 390–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Galluzzo, C. Martini, P. Bulzomi et al., “Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms,” Molecular Nutrition and Food Research, vol. 53, no. 6, pp. 699–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Mariño, F. Madeo, and G. Kroemer, “Autophagy for tissue homeostasis and neuroprotection,” Current Opinion in Cell Biology, vol. 23, no. 2, pp. 198–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Gabryel, A. Kost, and D. Kasprowska, “Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies?” Pharmacological Reports, vol. 64, no. 1, pp. 1–15, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Giordano, V. Darley-Usmar, and J. Zhang, “Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease,” Redox Biology, vol. 2, no. 1, pp. 82–90, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic, and W. Le, “Rapamycin protects against rotenone-induced apoptosis through autophagy induction,” Neuroscience, vol. 164, no. 2, pp. 541–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Qu, X. C. Liang, B. Gu, and W. Liu, “Quercetin alleviates high glucose-induced Schwann cell damage by autophagy,” Neural Regeneration Research, vol. 9, no. 12, pp. 1195–1203, 2014. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Regitz, L. M. Dußling, and U. Wenzel, “Amyloid-beta (Aβ142)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways,” Molecular Nutrition & Food Research, vol. 58, no. 10, pp. 1931–1940, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Dang, “The controversial world of sirtuins,” Drug Discovery Today: Technologies, vol. 12, pp. e9–e17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Leyton, M. Hott, F. Acuña et al., “Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection,” Virus Research, vol. 205, pp. 63–72, 2015. View at Publisher · View at Google Scholar
  99. S. Skaper, L. Facci, and P. Giusti, “Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review,” CNS & Neurological Disorders—Drug Targets, vol. 13, no. 10, pp. 1654–1666, 2015. View at Publisher · View at Google Scholar
  100. B. T. Baune, “Inflammation and neurodegenerative disorders: is there still hope for therapeutic intervention?” Current Opinion in Psychiatry, vol. 28, no. 2, pp. 148–154, 2015. View at Publisher · View at Google Scholar · View at Scopus
  101. S. J. Chinta, A. Ganesan, P. Reis-Rodrigues, G. J. Lithgow, and J. K. Andersen, “Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease,” Neurotoxicity Research, vol. 23, no. 2, pp. 145–153, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. J.-C. Chen, F.-M. Ho, P.-D. L. Chao et al., “Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia,” European Journal of Pharmacology, vol. 521, no. 1–3, pp. 9–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Bureau, F. Longpré, and M.-G. Martinoli, “Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation,” Journal of Neuroscience Research, vol. 86, no. 2, pp. 403–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Sharma, M. Mishra, S. Ghosh et al., “Modulation of interleukin-1β mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection,” Brain Research Bulletin, vol. 73, no. 1–3, pp. 55–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Miodini, L. Fioravanti, G. Di Fronzo, and V. Cappelletti, “The two phyto-oestrogens genistein and quercetin exert different effects on oestrogen receptor function,” British Journal of Cancer, vol. 80, no. 8, pp. 1150–1155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. H. van der Woude, M. G. R. ter Veld, N. Jacobs, P. T. van der Saag, A. J. Murk, and I. M. C. M. Rietjens, “The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor,” Molecular Nutrition & Food Research, vol. 49, no. 8, pp. 763–771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Bulzomi, P. Galluzzo, A. Bolli, S. Leone, F. Acconcia, and M. Marino, “The pro-apoptotic effect of quercetin in cancer cell lines requires ERβ-dependent signals,” Journal of Cellular Physiology, vol. 227, no. 5, pp. 1891–1898, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. J. W. Simpkins, K. D. Yi, S.-H. Yang, and J. A. Dykens, “Mitochondrial mechanisms of estrogen neuroprotection,” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1800, no. 10, pp. 1113–1120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. I. Azcoitia, M.-A. Arevalo, A. F. De Nicola, and L. M. Garcia-Segura, “Neuroprotective actions of estradiol revisited,” Trends in Endocrinology and Metabolism, vol. 22, no. 12, pp. 467–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Del Rio, L. G. Costa, M. E. J. Lean, and A. Crozier, “Polyphenols and health: what compounds are involved?” Nutrition, Metabolism & Cardiovascular Diseases, vol. 20, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus