Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 3419479, 8 pages
http://dx.doi.org/10.1155/2016/3419479
Research Article

Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

1Department of Pharmacology, Faculty of Medicine, Firat University, Elazığ, Turkey
2Department of Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
3Department of Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey
4Department of Histology, Faculty of Medicine, Firat University, Elazığ, Turkey
5Department of Biochemistry, Faculty of Veterinary, Firat University, Elazığ, Turkey

Received 24 April 2015; Accepted 8 February 2016

Academic Editor: Vittorio Calabrese

Copyright © 2016 Aburrahman Gun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Madero, S. E. Perez-Pozo, D. Jalal, R. J. Johnson, and L. G. Sánchez-Lozada, “Dietary fructose and hypertension,” Current Hypertension Reports, vol. 13, no. 1, pp. 29–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Johnson, M. S. Segal, Y. Sautin et al., “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” The American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 899–906, 2007. View at Google Scholar · View at Scopus
  3. T. Kizhner and M. J. Werman, “Long-term fructose intake: biochemical consequences and altered renal histology in the male rat,” Metabolism: Clinical and Experimental, vol. 51, no. 12, pp. 1538–1547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Korkmaz, “Fruktoz; Kronik Hastalıklar İçin Gizli Bir Tehdit,” TAF Preventive Medicine Bulletin, vol. 7, no. 4, pp. 343–346, 2008. View at Google Scholar
  5. C. S. Tam, S. P. Garnett, C. T. Cowell, K. Campbell, G. Cabrera, and L. A. Baur, “Soft drink consumption and excess weight gain in Australian school students: results from the Nepean study,” International Journal of Obesity, vol. 30, no. 7, pp. 1091–1093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. A. Moreno and G. Rodríguez, “Dietary risk factors for development of childhood obesity,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 10, no. 3, pp. 336–341, 2007. View at Publisher · View at Google Scholar
  7. M. C. Ochoa, M. J. Moreno-Aliaga, M. A. Martínez-González, J. A. Martínez, and A. Marti, “Predictor factors for childhood obesity in a Spanish case-control study,” Nutrition, vol. 23, no. 5, pp. 379–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. V. S. Malik, M. B. Schulze, and F. B. Hu, “Intake of sugar-sweetened beverages and weight gain: a systematic review,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 274–288, 2006. View at Google Scholar · View at Scopus
  9. L. G. Sánchez-Lozada, E. Tapia, A. Jiménez et al., “Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats,” The American Journal of Physiology—Renal Physiology, vol. 292, no. 1, pp. F423–F429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ferder, M. D. Ferder, and F. Inserra, “The role of high-fructose corn syrup in metabolic syndrome and hypertension,” Current Hypertension Reports, vol. 12, no. 2, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Tappy and K.-A. Le, “Metabolic effects of fructose and the worldwide increase in obesity,” Physiological Reviews, vol. 90, no. 1, pp. 23–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D'Angelo, A. A. Elmarakby, D. M. Pollock, and D. W. Stepp, “Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats,” Hypertension, vol. 46, no. 4, pp. 806–811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. S. Hwang, H. Ho, B. B. Hoffman, and G. M. Reaven, “Fructose-induced insulin resistance and hypertension in rats,” Hypertension, vol. 10, no. 5, pp. 512–516, 1987. View at Publisher · View at Google Scholar · View at Scopus
  14. L. T. Tran, V. G. Yuen, and J. H. McNeill, “The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension,” Molecular and Cellular Biochemistry, vol. 332, no. 1-2, pp. 145–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Borrelli, P. Maffia, L. Pinto et al., “Phytochemical compounds involved in the anti-inflammatory effect of propolis extract,” Fitoterapia, vol. 73, no. 1, pp. 53–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Castaldo and F. Capasso, “Propolis, an old remedy used in modern medicine,” Fitoterapia, vol. 73, no. 1, pp. S1–S6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Dobrowolski, S. B. Vohora, K. Sharma, S. A. Shah, S. A. H. Naqvi, and P. C. Dandiya, “Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products,” Journal of Ethnopharmacology, vol. 35, no. 1, pp. 77–82, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wang, P. D. Bowman, S. M. Kerwin, and S. Stavchansky, “Stability of caffeic acid phenethyl ester and its fluorinated derivative in rat plasma,” Biomedical Chromatography, vol. 21, no. 4, pp. 343–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. F. Sud'ina, O. K. Mirzoeva, M. A. Pushkareva, G. A. Korshunova, N. V. Sumbatyan, and S. D. Varfolomeev, “Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties,” FEBS Letters, vol. 329, no. 1-2, pp. 21–24, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Russo, R. Longo, and A. Vanella, “Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin,” Fitoterapia, vol. 73, no. 1, pp. 21–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Jaiswal, R. Venugopal, J. Mucha, A. M. Carothers, and D. Grunberger, “Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene,” Cancer Research, vol. 57, no. 3, pp. 440–446, 1997. View at Google Scholar · View at Scopus
  22. M.-T. Huang, W. Ma, P. Yen et al., “Inhibitory effects of caffeic acid phenethyl ester (CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA, RNA and protein in HeLa cells,” Carcinogenesis, vol. 17, no. 4, pp. 761–765, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Son, E. B. Lobkowsky, and B. A. Lewis, “Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 2, pp. 236–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Natarajan, S. Singh, T. R. Burke Jr., D. Grunberger, and B. B. Aggarwal, “Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 17, pp. 9090–9095, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. M. K. Ozer, H. Parlakpinar, Y. Cigremis, M. Ucar, N. Vardi, and A. Acet, “Ischemia-reperfusion leads to depletion of glutathione content and augmentation of malondialdehyde production in the rat heart from overproduction of oxidants: can caffeic acid phenethyl ester (CAPE) protect the heart?” Molecular and Cellular Biochemistry, vol. 273, no. 1-2, pp. 169–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. E. Ventura, J. N. Davis, and M. I. Goran, “Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content,” Obesity, vol. 19, no. 4, pp. 868–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Akar, M. B. Pektas, C. Tufan et al., “Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits,” Cardiovascular Drugs and Therapy, vol. 25, no. 2, pp. 119–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. Reaven, H. Ho, and B. B. Hoffmann, “Somatostatin inhibition of fructose-induced hypertension,” Hypertension, vol. 14, no. 2, pp. 117–120, 1989. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Vasudevan, H. Xiang, and J. H. McNeill, “Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 4, pp. H1335–H1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Verma, S. Bhanot, and J. H. McNeill, “Antihypertensive effects of metformin in fructose-fed hyperinsulinemic, hypertensive rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 271, no. 3, pp. 1334–1337, 1994. View at Google Scholar · View at Scopus
  31. S. Dai and J. H. McNeill, “Fructose-induced hypertension in rats is concentration- and duration-dependent,” Journal of Pharmacological and Toxicological Methods, vol. 33, no. 2, pp. 101–107, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Verma, “Insulin resistance and hypertension: pharmacological and mechanistic studies,” Canadian Journal of Diabetes Care, vol. 23, pp. 23–42, 2000. View at Google Scholar
  34. A. Cosenzi, E. Bernobich, N. Plazzotta, P. Seculin, and G. Bellini, “Bosentan reduces blood pressure and the target-organ damage induced by a high-fructose diet in rats,” Journal of Hypertension, vol. 17, no. 12, pp. 1843–1848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Iimura, K. Shimamoto, K. Matsuda et al., “Effects of angiotensin receptor antagonist and angiotensin converting enzyme inhibitor on insulin sensitivity in fructose-fed hypertensive rats and essential hypertensives,” American Journal of Hypertension, vol. 8, no. 4, pp. 353–357, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. P. V. G. Katakam, M. R. Ujhelyi, M. E. Hoenig, and A. W. Miller, “Endothelial dysfunction precedes hypertension in diet-induced insulin resistance,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 275, no. 3, pp. R788–R792, 1998. View at Google Scholar · View at Scopus
  37. A. Aljada, H. Ghanim, E. Assian, and P. Dandona, “Tumor necrosis factor-α inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cells,” Metabolism: Clinical and Experimental, vol. 51, no. 4, pp. 487–491, 2002. View at Publisher · View at Google Scholar
  38. R. R. Freitas, K. L. Lopes, B. A. Carillo et al., “Sympathetic and renin-angiotensin systems contribute to increased blood pressure in sucrose-fed rats,” American Journal of Hypertension, vol. 20, no. 6, pp. 692–698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. A. Hassan, H. M. El-Bassossy, M. F. Mahmoud, and A. Fahmy, “Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness,” Chemico-Biological Interactions, vol. 213, no. 1, pp. 28–36, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Mollaoglu, A. Gokcimen, F. Ozguner et al., “Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat,” Toxicology, vol. 227, no. 1-2, pp. 15–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Félétou, R. Köhler, and P. M. Vanhoutte, “Nitric oxide: orchestrator of endothelium-dependent responses,” Annals of Medicine, vol. 44, no. 7, pp. 694–716, 2012. View at Publisher · View at Google Scholar
  42. K. Kamata, N. Kanie, and A. Inose, “Mechanisms underlying attenuated contractile response of aortic rings to noradrenaline in fructose-fed mice,” European Journal of Pharmacology, vol. 428, no. 2, pp. 241–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. W. G. McLean, C. Pekiner, N. A. Cullum, and I. F. Casson, “Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes,” Molecular Neurobiology, vol. 6, no. 2-3, pp. 225–237, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Pekiner, N. A. Cullum, J. N. Hughes et al., “Glycation of brain actin in experimental diabetes,” Journal of Neurochemistry, vol. 61, no. 2, pp. 436–442, 1993. View at Google Scholar · View at Scopus
  45. M. A. Pfaffman, R. Hilman, and A. Darby, “Contractile and relaxing activity of arterial smooth muscle from streptozotocin-diabetic rats,” Research Communications in Chemical Pathology and Pharmacology, vol. 30, no. 2, pp. 283–299, 1980. View at Google Scholar · View at Scopus
  46. P. A. Longhurst and R. J. Head, “Responses of the isolated perfused mesenteric vasculature from diabetic rats: the significance of appropriate control tissues,” Journal of Pharmacology and Experimental Therapeutics, vol. 235, no. 1, pp. 45–49, 1985. View at Google Scholar · View at Scopus
  47. S. Ramanadham, W. H. Lyness, and T. E. Tenner Jr., “Alterations in aortic and tail artery reactivity to agonists after streptozotocin treatment,” Canadian Journal of Physiology and Pharmacology, vol. 62, no. 4, pp. 418–423, 1984. View at Publisher · View at Google Scholar · View at Scopus
  48. P. D. Turlapaty, G. Lum, and B. M. Altura, “Vascular responsiveness and serum biochemical parameters in alloxan diabetes mellitus,” The American Journal of Physiology, vol. 239, no. 6, pp. E412–E421, 1980. View at Google Scholar · View at Scopus
  49. C. V. Jackson and G. O. Carrier, “Influence of short-term experimental diabetes on blood pressure and heart rate in response to norepinephrine and angiotensin II in the conscious rat,” Journal of Cardiovascular Pharmacology, vol. 5, no. 2, pp. 260–265, 1983. View at Publisher · View at Google Scholar · View at Scopus
  50. P. D. Lucas, “Effects of streptozotocin-induced diabetes and noradrenaline infusion on cardiac output and its regional distribution in pithed rats,” Diabetologia, vol. 28, no. 2, pp. 108–112, 1985. View at Google Scholar · View at Scopus
  51. R. A. Hebden, T. Bennett, and S. M. Gardiner, “Pressor sensitivities to vasopressin, angiotensin II, or methoxamine in diabetic rats,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 253, no. 5, part 2, pp. R726–R734, 1987. View at Google Scholar · View at Scopus
  52. J. B. Heijnis, M.-J. Mathy, M. Pfaffendorf, and P. A. van Zwieten, “Differential effects of alpha 1- and alpha 2-adrenoceptor agonists on peripheral vasoconstriction in pithed diabetic rats,” Journal of Cardiovascular Pharmacology, vol. 20, no. 4, pp. 554–558, 1992. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. B. Fortes, J. Garcia Leme, and R. Scivoletto, “Vascular reactivity in diabetes mellitus: role of the endothelial cell,” British Journal of Pharmacology, vol. 79, no. 3, pp. 771–781, 1983. View at Google Scholar
  54. R. J. Head, P. A. Longhurst, R. L. Panek, and R. E. Stitzel, “A contrasting effect of the diabetic state upon the contractile responses of aortic preparations from the rat and rabbit,” British Journal of Pharmacology, vol. 91, no. 2, pp. 275–286, 1987. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Wakabayashi, K. Hatake, N. Kimura, E. Kakishita, and K. Nagai, “Modulation of vascular tonus by the endothelium in experimental diabetes,” Life Sciences, vol. 40, no. 7, pp. 643–648, 1987. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Mulhern and J. R. Docherty, “Effects of experimental diabetes on the responsiveness of rat aorta,” British Journal of Pharmacology, vol. 97, no. 4, pp. 1007–1012, 1989. View at Publisher · View at Google Scholar · View at Scopus
  57. K. H. Harris and K. M. MacLeod, “Influence of the endothelium on contractile responses of arteries from diabetic rats,” European Journal of Pharmacology, vol. 153, no. 1, pp. 55–64, 1988. View at Publisher · View at Google Scholar · View at Scopus