Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 3806157, 8 pages
http://dx.doi.org/10.1155/2016/3806157
Review Article

Getting to NO Alzheimer’s Disease: Neuroprotection versus Neurotoxicity Mediated by Nitric Oxide

Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

Received 3 July 2015; Accepted 16 August 2015

Academic Editor: Javier Egea

Copyright © 2016 Rachelle Balez and Lezanne Ooi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Reitz, C. Brayne, and R. Mayeux, “Epidemiology of Alzheimer disease,” Nature Reviews Neurology, vol. 7, no. 3, pp. 137–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Wimo, L. Jönsson, J. Bond, M. Prince, and B. Winblad, “The worldwide economic impact of dementia 2010,” Alzheimer's and Dementia, vol. 9, no. 1, pp. 1–11, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Thies and L. Bleiler, “2012 Alzheimer's disease facts and figures,” Alzheimer's and Dementia, vol. 8, no. 2, pp. 131–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Casey, D. Antimisiaris, and J. O'Brien, “Drugs for Alzheimer's disease: are they effective?” Pharmacology & Therapeutics, vol. 35, no. 4, pp. 208–211, 2010. View at Google Scholar
  5. J. Poirier, J. Davignon, D. Bouthillier, S. Kogan, P. Bertrand, and S. Gauthier, “Apolipoprotein E polymorphism and Alzheimer's disease,” The Lancet, vol. 342, no. 8873, pp. 697–699, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Haass, C. A. Lemere, A. Capell et al., “The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway,” Nature Medicine, vol. 1, no. 12, pp. 1291–1296, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. B. De Strooper, T. Iwatsubo, and M. S. Wolfe, “Presenilins and γ-secretase: structure, function, and role in Alzheimer disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, Article ID a006304, 2012. View at Google Scholar · View at Scopus
  8. H. W. Querfurth and F. M. LaFerla, “Alzheimer's disease,” The New England Journal of Medicine, vol. 362, no. 4, pp. 329–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Butterfield, J. Drake, C. Pocernich, and A. Castegna, “Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β-peptide,” Trends in Molecular Medicine, vol. 7, no. 12, pp. 548–554, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Goedert, M. G. Spillantini, N. J. Cairns, and R. A. Crowther, “Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms,” Neuron, vol. 8, no. 1, pp. 159–168, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Messing, J. M. Decker, M. Joseph, E. Mandelkow, and E.-M. Mandelkow, “Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors,” Neurobiology of Aging, vol. 34, no. 5, pp. 1343–1354, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Padurariu, A. Ciobica, R. Lefter, I. L. Serban, C. Stefanescu, and R. Chirita, “The oxidative stress hypothesis in Alzheimer's disease,” Psychiatria Danubina, vol. 25, no. 4, pp. 401–409, 2013. View at Google Scholar · View at Scopus
  13. M. Schrag, C. Mueller, M. Zabel et al., “Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: a meta-analysis,” Neurobiology of Disease, vol. 59, pp. 100–110, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. T. T. Reed, W. M. Pierce Jr., D. M. Turner, W. R. Markesbery, and D. Allan Butterfield, “Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 2019–2029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Smith, P. L. Richey Harris, L. M. Sayre, J. S. Beckman, and G. Perry, “Widespread peroxynitrite-mediated damage in Alzheimer's disease,” The Journal of Neuroscience, vol. 17, no. 8, pp. 2653–2657, 1997. View at Google Scholar · View at Scopus
  16. M. P. Mattson, “Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease,” Journal of NeuroVirology, vol. 8, no. 6, pp. 539–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Wang, W. Wang, L. Li, G. Perry, H. Lee, and X. Zhu, “Oxidative stress and mitochondrial dysfunction in Alzheimer's disease,” in Mitochondrial Dysfunction in Neurodegenerative Disorders, vol. 1842, pp. 1240–1247, 2014. View at Google Scholar
  18. J. T. Coyle, D. L. Price, and M. R. DeLong, “Alzheimer's disease: a disorder of cortical cholinergic innervation,” Science, vol. 219, no. 4589, pp. 1184–1190, 1983. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Mullane and M. Williams, “Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond?” Biochemical Pharmacology, vol. 85, no. 3, pp. 289–305, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Hake, “Use of cholinesterase inhibitors for treatment of Alzheimer disease,” Cleveland Clinic Journal of Medicine, vol. 68, no. 7, pp. 608–616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Montagne, S. R. Barnes, M. D. Sweeney et al., “Blood-Brain barrier breakdown in the aging human hippocampus,” Neuron, vol. 85, no. 2, pp. 296–302, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. A. V. R. Santhanam, L. V. d'Uscio, T. He, P. Das, S. G. Younkin, and Z. S. Katusic, “Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice,” Journal of Neurochemistry, 2015. View at Publisher · View at Google Scholar
  23. T. Nakamura, S. Tu, M. W. Akhtar, C. R. Sunico, S.-I. Okamoto, and S. A. Lipton, “Aberrant protein S-nitrosylation in neurodegenerative diseases,” Neuron, vol. 78, no. 4, pp. 596–614, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Hensley, M. L. Maidt, Z. Yu, H. Sang, W. R. Markesbery, and R. A. Floyd, “Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation,” The Journal of Neuroscience, vol. 18, no. 20, pp. 8126–8132, 1998. View at Google Scholar · View at Scopus
  25. D. D. Thomas, M. G. Espey, M. P. Vitek, K. M. Miranda, and D. A. Wink, “Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2-reaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12691–12696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Malinski, “Nitric oxide and nitroxidative stress in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 11, no. 2, pp. 207–218, 2007. View at Google Scholar · View at Scopus
  27. D. A. Geller and T. R. Billiar, “Molecular biology of nitric oxide synthases,” Cancer and Metastasis Reviews, vol. 17, no. 1, pp. 7–23, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Beckman and J. H. Tsai, “Reactions and diffusion of nitric oxide and peroxynitrite,” Biochemist, vol. 16, pp. 8–10, 1994. View at Google Scholar
  29. A. Law, S. Gauthier, and R. Quirion, “Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer's type,” Brain Research Reviews, vol. 35, no. 1, pp. 73–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. R. M. Santos, C. F. Lourenço, A. Ledo, R. M. Barbosa, and J. Laranjinha, “Nitric oxide inactivation mechanisms in the brain: role in bioenergetics and neurodegeneration,” International Journal of Cell Biology, vol. 2012, Article ID 391914, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Steinert, T. Chernova, and I. D. Forsythe, “Nitric oxide signaling in brain function, dysfunction, and dementia,” The Neuroscientist, vol. 16, no. 4, pp. 435–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Arancio, V. Lev-Ram, R. Y. Tsien, E. R. Kandel, and R. D. Hawkins, “Nitric oxide acts as a retrograde messenger during long-term potentiation in cultured hippocampal neurons,” Journal of Physiology Paris, vol. 90, no. 5-6, pp. 321–322, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. D. K. Ditlevsen, L. B. Køhler, V. Berezin, and E. Bock, “Cyclic guanosine monophosphate signalling pathway plays a role in neural cell adhesion molecule-mediated neurite outgrowth and survival,” Journal of Neuroscience Research, vol. 85, no. 4, pp. 703–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kohgami, T. Ogata, T. Morino, H. Yamamoto, and P. Schubert, “Pharmacological shift of the ambiguous nitric oxide action from neurotoxicity to cyclic GMP-mediated protection,” Neurological Research, vol. 32, no. 9, pp. 938–944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. J. O'Dell, R. D. Hawkins, E. R. Kandel, and O. Arancio, “Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11285–11289, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Bezprozvanny and M. P. Mattson, “Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease,” Trends in Neurosciences, vol. 31, no. 9, pp. 454–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. F. X. Guix, T. Wahle, K. Vennekens et al., “Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease,” EMBO Molecular Medicine, vol. 4, no. 7, pp. 660–673, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Sultana, H. F. Poon, J. Cai et al., “Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach,” Neurobiology of Disease, vol. 22, no. 1, pp. 76–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Fernández-Vizarra, A. P. Fernández, S. Castro-Blanco et al., “Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease,” Neurobiology of Disease, vol. 15, no. 2, pp. 287–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Malinski and I. Huk, “UNIT 7.14 measurement of nitric oxide in single cells and tissue using a porphyrinic microsenso,” in Current Protocols in Neuroscience, chapter 7, John Wiley & Sons, 2001. View at Publisher · View at Google Scholar
  41. Š. Mesároš, Ž. Vaňková, S. Grunfeld, A. Mesárošová, and T. Malinski, “Preparation and optimization of superoxide microbiosensor,” Analytica Chimica Acta, vol. 358, no. 1, pp. 27–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Winblad and N. Poritis, “Memantine in severe dementia, results of the 9M-best study (benefit and efficacy in severly demented patients during treatment with memantine),” International Journal of Geriatric Psychiatry, vol. 14, no. 2, pp. 135–146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Collingridge, “Synaptic plasticity. The role of NMDA receptors in learning and memory,” Nature, vol. 330, no. 6149, pp. 604–605, 1987. View at Publisher · View at Google Scholar
  44. X. Zhou, D. Hollern, J. Liao, E. Andrechek, and H. Wang, “NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors,” Cell Death and Disease, vol. 4, no. 3, article e560, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. E. M. Schuman and D. V. Madison, “A requirement for the intercellular messenger nitric oxide in long-term potentiation,” Science, vol. 254, no. 5037, pp. 1503–1506, 1991. View at Publisher · View at Google Scholar · View at Scopus
  46. D. T. Chalmers, D. Dewar, D. I. Graham, D. N. Brooks, and J. McCulloch, “Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 4, pp. 1352–1356, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Pomara, R. Singh, D. Deptula, J. C.-Y. Chou, M. B. Schwartz, and P. A. LeWitt, “Glutamate and other CSF amino acids in Alzheimer's disease,” American Journal of Psychiatry, vol. 149, no. 2, pp. 251–254, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. G. C. Brown, “Nitric oxide and neuronal death,” Nitric Oxide, vol. 23, no. 3, pp. 153–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. R. P. Brown, D. J. Wyper, J. Owens et al., “123Iodo-MK-801: a spect agent for imaging the pattern and extent of glutamate (NMDA) receptor activiation in Alzheimer's disease,” Journal of Psychiatric Research, vol. 31, no. 6, pp. 605–619, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Nathan, N. Calingasan, J. Nezezon et al., “Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1163–1169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. N. Wallace, J. G. Geddes, D. A. Farquhar, and M. R. Masson, “Nitric oxide synthase in reactive astrocytes adjacent to β-amyloid plaques,” Experimental Neurology, vol. 144, no. 2, pp. 266–272, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. B. A. Yankner, L. K. Duffy, and D. A. Kirschner, “Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides,” Science, vol. 250, no. 4978, pp. 279–282, 1990. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Takahashi, Y. Chin, T. Nonaka, M. Hasegawa, N. Watanabe, and T. Arai, “Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells,” Neuroscience Letters, vol. 510, no. 1, pp. 48–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. S. T. DeKosky and S. W. Scheff, “Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity,” Annals of Neurology, vol. 27, no. 5, pp. 457–464, 1990. View at Publisher · View at Google Scholar · View at Scopus
  55. R. D. Terry, E. Masliah, D. P. Salmon et al., “Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment,” Annals of Neurology, vol. 30, no. 4, pp. 572–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Chakroborty, J. Kim, C. Schneider, A. R. West, and G. E. Stutzmann, “Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer’s disease mice,” The Journal of Neuroscience, vol. 35, no. 17, pp. 6893–6902, 2015. View at Publisher · View at Google Scholar
  57. N. Gamper and L. Ooi, “Redox and nitric oxide-mediated regulation of sensory neuron ion channel function,” Antioxidants and Redox Signaling, vol. 22, no. 6, pp. 486–504, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Ooi, S. Gigout, L. Pettinger, and N. Gamper, “Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species,” Journal of Neuroscience, vol. 33, no. 14, pp. 6041–6046, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. T. S. Surti and L. Y. Jan, “A potassium channel, the M-channel, as a therapeutic target,” Current Opinion in Investigational Drugs, vol. 6, no. 7, pp. 704–711, 2005. View at Google Scholar · View at Scopus
  60. M. J. Kan, J. E. Lee, J. G. Wilson et al., “Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease,” The Journal of Neuroscience, vol. 35, no. 15, pp. 5969–5982, 2015. View at Publisher · View at Google Scholar
  61. K. Baruch, A. Kertser, Z. Porat, and M. Schwartz, “Cerebral nitric oxide represses choroid plexus NF B-dependent gateway activity for leukocyte trafficking,” The EMBO Journal, vol. 34, no. 13, pp. 1816–1828, 2015. View at Publisher · View at Google Scholar
  62. H. Javed, M. M. Khan, A. Ahmad et al., “Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type,” Neuroscience, vol. 210, pp. 340–352, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. P.-X. Xu, S.-W. Wang, X.-L. Yu et al., “Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation,” Behavioural Brain Research, vol. 264, pp. 173–180, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Ooi, K. Sidhu, A. Poljak et al., “Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer's disease,” Journal of Neural Transmission, vol. 120, no. 1, pp. 103–111, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. B. T. Hyman, K. Marzloff, J. J. Wenniger, T. M. Dawson, D. S. Bredt, and S. H. Snyder, “Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's disease,” Annals of Neurology, vol. 32, no. 6, pp. 818–820, 1992. View at Publisher · View at Google Scholar · View at Scopus
  66. M.-A. Dorheim, W. R. Tracey, J. S. Pollock, and P. Grammas, “Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer′s disease,” Biochemical and Biophysical Research Communications, vol. 205, no. 1, pp. 659–665, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. W. C. Benzing and E. J. Mufson, “Increased number of NADPH-d-positive neurons within the substantia innominata in Alzheimer's disease,” Brain Research, vol. 670, no. 2, pp. 351–355, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. P. J. Norris, R. L. M. Faull, and P. C. Emson, “Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains,” Molecular Brain Research, vol. 41, no. 1-2, pp. 36–49, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Gargiulo, M. Bermejo, and A. Liras, “Reduced neuronal nitric oxide synthetase and C protein kinase levels in Alzheimer's disease,” Revista de Neurologia, vol. 30, no. 4, pp. 301–303, 2000. View at Google Scholar · View at Scopus
  70. H.-J. Lüth, M. Holzer, U. Gärtner, M. Staufenbiel, and T. Arendt, “Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology,” Brain Research, vol. 913, no. 1, pp. 57–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Venturini, M. Colasanti, T. Persichini et al., “β-Amyloid inhibits NOS activity by subtracting NADPH availability,” The FASEB Journal, vol. 16, no. 14, pp. 1970–1972, 2002. View at Google Scholar · View at Scopus
  72. M. Y. Stepanichev, M. V. Onufriev, A. A. Yakovlev et al., “Amyloid-β (25–35) increases activity of neuronal NO-synthase in rat brain,” Neurochemistry International, vol. 52, no. 6, pp. 1114–1124, 2008. View at Publisher · View at Google Scholar · View at Scopus