Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016 (2016), Article ID 4729192, 14 pages
http://dx.doi.org/10.1155/2016/4729192
Review Article

Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

1Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
2Department of Pharmacology, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
3Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, Canada M5T 1R8

Received 8 May 2015; Accepted 14 June 2015

Academic Editor: Ioannis P. Trougakos

Copyright © 2016 Erik A. Fraunberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 4th edition, 2007.
  2. B. Harwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, part 5, pp. 1147–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Sies, “Oxidative stress: oxidants and antioxidants,” Experimental Physiology, vol. 82, no. 2, pp. 291–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Sies, “Biochemistry of oxidative stress,” Angewandte Chemie International Edition in English, vol. 25, no. 12, pp. 1058–1071, 1986. View at Publisher · View at Google Scholar
  6. L. M. Sayre, M. A. Smith, and G. Perry, “Chemistry and biochemistry of oxidative stress in neurodegenerative disease,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 721–738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Wong, L. Marcocci, L. Liu, and Y. J. Suzuki, “Cell signaling by protein carbonylation and decarbonylation,” Antioxidants & Redox Signaling, vol. 12, no. 3, pp. 393–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. M. W. Janssen-Heininger, B. T. Mossman, N. H. Heintz et al., “Redox-based regulation of signal transduction: principles, pitfalls, and promises,” Free Radical Biology and Medicine, vol. 45, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Giorgio, M. Trinei, E. Migliaccio, and P. G. Pelicci, “Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 722–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. Winterbourn, “Reconciling the chemistry and biology of reactive oxygen species,” Nature Chemical Biology, vol. 4, no. 5, pp. 278–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. W. M. Nauseef, “How human neutrophils kill and degrade microbes: an integrated view,” Immunological Reviews, vol. 219, no. 1, pp. 88–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Bouayed and T. Bohn, “Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 4, pp. 228–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Habas, J. Hahn, X. Wang, and M. Margeta, “Neuronal activity regulates astrocytic Nrf2 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 45, pp. 18291–18296, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Niture, R. Khatri, and A. K. Jaiswal, “Regulation of Nrf2—an update,” Free Radical Biology and Medicine, vol. 66, pp. 36–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. K. W. Kang, S. J. Lee, and S. G. Kim, “Molecular mechanism of Nrf2 activation by oxidative stress,” Antioxidants and Redox Signaling, vol. 7, no. 11-12, pp. 1664–1673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-C. Um, J.-H. Jang, D.-H. Kim, C. Lee, and Y.-J. Surh, “Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells,” Nitric Oxide, vol. 25, no. 2, pp. 161–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Mizuno and H. Itoh, “Functions and regulatory mechanisms of Gq-signaling pathways,” NeuroSignals, vol. 17, no. 1, pp. 42–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Li and A.-N. Kong, “Molecular mechanisms of Nrf2-mediated antioxidant response,” Molecular Carcinogenesis, vol. 48, no. 2, pp. 91–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Pascale, D. L. Alkon, and M. Grimaldi, “Translocation of protein kinase C-βII in astrocytes requires organized actin cytoskeleton and is not accompanied by synchronous RACK1 relocation,” Glia, vol. 46, no. 2, pp. 169–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Niture, A. K. Jain, and A. K. Jaiswal, “Antioxidant-induced modification of INrf2 cysteine 151 and PKC-δ-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance,” Journal of Cell Science, vol. 122, part 24, pp. 4452–4464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Shao, X. Sun, L. Xu, L. T. Young, and J.-F. Wang, “Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells,” Life Sciences, vol. 78, no. 12, pp. 1317–1323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Theodore, Y. Kawai, J. Yang et al., “Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2,” The Journal of Biological Chemistry, vol. 283, no. 14, pp. 8984–8994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. W. Kaspar, S. K. Niture, and A. K. Jaiswal, “Nrf2:INrf2 (Keap1) signaling in oxidative stress,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1304–1309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Gorrini, I. S. Harris, and T. W. Mak, “Modulation of oxidative stress as an anticancer strategy,” Nature Reviews Drug Discovery, vol. 12, no. 12, pp. 931–947, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kamal-Eldin and L.-Å. Appelqvist, “The chemistry and antioxidant properties of tocopherols and tocotrienols,” Lipids, vol. 31, no. 7, pp. 671–701, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Alarcón de la Lastra and I. Villegas, “Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1156–1160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Leopoldini, T. Marino, N. Russo, and M. Toscano, “Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism,” The Journal of Physical Chemistry A, vol. 108, no. 22, pp. 4916–4922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Poeggeler, S. Saarela, R. J. Reiter et al., “Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro,” Annals of the New York Academy of Sciences, vol. 738, pp. 419–420, 1994. View at Google Scholar · View at Scopus
  34. J. V. Higdon and B. Frei, “Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 1, pp. 89–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Nanjo, M. Mori, K. Goto, and Y. Hara, “Radical scavenging activity of tea catechins and their related compounds,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 9, pp. 1621–1623, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Janeiro and A. M. Oliveira Brett, “Catechin electrochemical oxidation mechanisms,” Analytica Chimica Acta, vol. 518, no. 1-2, pp. 109–115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Pannala, R. Razaq, B. Halliwell, S. Singh, and C. A. Rice-Evans, “Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation?” Free Radical Biology and Medicine, vol. 24, no. 4, pp. 594–606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. A. S. Pannala, C. A. Rice-Evans, B. Halliwell, and S. Singh, “Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols,” Biochemical and Biophysical Research Communications, vol. 232, no. 1, pp. 164–168, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Scola, D. Conte, P. W. D.-S. Spada et al., “Flavan-3-ol compounds from wine wastes with in vitro and in vivo antioxidant activity,” Nutrients, vol. 2, no. 10, pp. 1048–1059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. B. Chenoweth, “Chelation as a mechanism of pharmacological action,” Pharmacological Reviews, vol. 8, no. 1, pp. 57–87, 1956. View at Google Scholar · View at Scopus
  41. R. C. Hider, Z. D. Liu, and H. H. Khodr, “Metal chelation of polyphenols,” Methods in Enzymology, vol. 335, pp. 190–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. M. P. Corcoran, D. L. McKay, and J. B. Blumberg, “Flavonoid basics: chemistry, sources, mechanisms of action, and safety,” Journal of Nutrition in Gerontology and Geriatrics, vol. 31, no. 3, pp. 176–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Bavarsad Shahripour, M. R. Harrigan, and A. V. Alexandrov, “N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities,” Brain and Behavior, vol. 4, no. 2, pp. 108–122, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. K. P. Shay, R. F. Moreau, E. J. Smith, A. R. Smith, and T. M. Hagen, “Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1149–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Magyar, “The pharmacology of selegiline,” International Review of Neurobiology, vol. 100, pp. 65–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Denu, “Fortifying the link between SIRT1, resveratrol, and mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 566–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Stefani, M. A. Markus, R. C. Y. Lin, M. Pinese, I. W. Dawes, and B. J. Morris, “The effect of resveratrol on a cell model of human aging,” Annals of the New York Academy of Sciences, vol. 1114, pp. 407–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. G. J. P. L. Kops, T. B. Dansen, P. E. Polderman et al., “Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress,” Nature, vol. 419, no. 6904, pp. 316–321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. L.-O. Klotz, K.-D. Kröncke, D. P. Buchczyk, and H. Sies, “Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress,” Journal of Nutrition, vol. 133, no. 5, pp. 1448S–1451S, 2003. View at Google Scholar · View at Scopus
  50. G. E. Arteel, K. Briviba, and H. Sies, “Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen,” Chemical Research in Toxicology, vol. 12, no. 3, pp. 264–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. A. A. Gorman, I. R. Gould, I. Hamblett, and M. C. Standen, “Reversible exciplex formation between singlet oxygen, 1Δg, and vitamin E. Solvent and temperature effects,” Journal of the American Chemical Society, vol. 106, no. 23, pp. 6956–6959, 1984. View at Publisher · View at Google Scholar
  52. P. Jenner, “Oxidative stress in Parkinson's disease,” Annals of Neurology, vol. 53, supplement 3, pp. S26–S38, 2003. View at Publisher · View at Google Scholar
  53. R. B. Mounsey and P. Teismann, “Chelators in the treatment of iron accumulation in Parkinson's disease,” International Journal of Cell Biology, vol. 2012, Article ID 983245, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. M. P. Murphy and H. LeVine III, “Alzheimer's disease and the amyloid-β peptide,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 311–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Kontush, C. Berndt, W. Weber et al., “Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma,” Free Radical Biology and Medicine, vol. 30, no. 1, pp. 119–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Kontush, “Amyloid-β: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease,” Free Radical Biology and Medicine, vol. 31, no. 9, pp. 1120–1131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. Alavijeh, M. Chishty, M. Z. Qaiser, and A. M. Palmer, “Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery,” NeuroRx, vol. 2, no. 4, pp. 554–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Lusardi, E. Piazza, and R. Fogari, “Cardiovascular effects of melatonin in hypertensive patients well controlled by nifedipine: a 24-hour study,” British Journal of Clinical Pharmacology, vol. 49, no. 5, pp. 423–427, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. H.-M. Zhang and Y. Zhang, “Melatonin: a well-documented antioxidant with conditional pro-oxidant actions,” Journal of Pineal Research, vol. 57, no. 2, pp. 131–146, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. D. G. Bailey, G. Dresser, and J. M. O. Arnold, “Grapefruit-medication interactions: forbidden fruit or avoidable consequences?” CMAJ, vol. 185, no. 4, pp. 309–316, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Burgos-Morón, J. M. Calderón-Montaño, J. Salvador, A. Robles, and M. López-Lázaro, “The dark side of curcumin,” International Journal of Cancer, vol. 126, no. 7, pp. 1771–1775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J. H. Weisburg, D. B. Weissman, T. Sedaghat, and H. Babich, “In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity,” Basic & Clinical Pharmacology & Toxicology, vol. 95, no. 4, pp. 191–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Emerit, M. Edeas, and F. Bricaire, “Neurodegenerative diseases and oxidative stress,” Biomedicine and Pharmacotherapy, vol. 58, no. 1, pp. 39–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Fonfria, I. C. B. Marshall, I. Boyfield et al., “Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures,” Journal of Neurochemistry, vol. 95, no. 3, pp. 715–723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Wang, W. Wang, L. Li, G. Perry, H.-G. Lee, and X. Zhu, “Oxidative stress and mitochondrial dysfunction in Alzheimer's disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1842, no. 8, pp. 1240–1247, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Persson, B. O. Popescu, and A. Cedazo-Minguez, “Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail?” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 427318, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Reynolds, C. Laurie, R. Lee Mosley, and H. E. Gendelman, “Oxidative stress and the pathogenesis of neurodegenerative disorders,” International Review of Neurobiology, vol. 82, pp. 297–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. A. H. K. Tsang and K. K. K. Chung, “Oxidative and nitrosative stress in Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1792, no. 7, pp. 643–650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Henchcliffe and F. M. Beal, “Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis,” Nature Clinical Practice Neurology, vol. 4, no. 11, pp. 600–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. K. S. P. McNaught and C. W. Olanow, “Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease,” Annals of Neurology, vol. 53, supplement 3, pp. S73–S86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Castellani, K. Hirai, G. Aliev et al., “Role of mitochondrial dysfunction in Alzheimer's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 357–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Leuner, K. Schulz, T. Schütt et al., “Peripheral mitochondrial dysfunction in Alzheimer's disease: focus on lymphocytes,” Molecular Neurobiology, vol. 46, no. 1, pp. 194–204, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li, “Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with alzheimer and Parkinson diseases,” The Journal of Biological Chemistry, vol. 280, no. 12, pp. 11648–11655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Wang, S. Xiong, C. Xie, W. R. Markesbery, and M. A. Lovell, “Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease,” Journal of Neurochemistry, vol. 93, no. 4, pp. 953–962, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Sultana, M. Perluigi, and D. A. Butterfield, “Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain,” Free Radical Biology and Medicine, vol. 62, pp. 157–169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. A. C. Andreazza, L. Shoo, J.-F. Wang, and L. Trevor Young, “Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder,” Archives of General Psychiatry, vol. 67, no. 4, pp. 360–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Gubert, L. Stertz, B. Pfaffenseller et al., “Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects,” Journal of Psychiatric Research, vol. 47, no. 10, pp. 1396–1402, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. H. K. Kim, A. C. Andreazza, P. Y. Yeung, C. Isaacs-Trepanier, and L. T. Young, “Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia,” Journal of Psychiatry and Neuroscience, vol. 39, no. 4, Article ID 130155, pp. 276–285, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. M. G. Soeiro-de-Souza, A. C. Andreazza, A. F. Carvalho, R. Machado-Vieira, L. T. Young, and R. A. Moreno, “Number of manic episodes is associated with elevated DNA oxidation in bipolar i disorder,” The International Journal of Neuropsychopharmacology, vol. 16, no. 7, pp. 1505–1512, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. A. C. Andreazza, J.-F. Wang, F. Salmasi, L. Shao, and L. T. Young, “Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder,” Journal of Neurochemistry, vol. 127, no. 4, pp. 552–561, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Scola, H. K. Kim, L. T. Young, and A. C. Andreazza, “A fresh look at complex i in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder,” Biological Psychiatry, vol. 73, no. 2, pp. e4–e5, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. E. H. Tobe, “Mitochondrial dysfunction, oxidative stress, and major depressive disorder,” Neuropsychiatric Disease and Treatment, vol. 9, pp. 567–573, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Maes, P. Galecki, Y. S. Chang, and M. Berk, “A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 676–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Milaneschi, M. Cesari, E. M. Simonsick et al., “Lipid peroxidation and depressed mood in community-dwelling older men and women,” PLoS ONE, vol. 8, no. 6, Article ID e65406, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Nishioka and S. E. Arnold, “Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia,” American Journal of Geriatric Psychiatry, vol. 12, no. 2, pp. 167–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Klepac, M. Relja, R. Klepac, S. Hećimović, T. Babić, and V. Trkulja, “Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects: a cross-sectional study,” Journal of Neurology, vol. 254, no. 12, pp. 1676–1683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. M. A. Sorolla, G. Reverter-Branchat, J. Tamarit, I. Ferrer, J. Ros, and E. Cabiscol, “Proteomic and oxidative stress analysis in human brain samples of Huntington disease,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 667–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. M. A. Oliveira, “Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum,” Journal of Neurochemistry, vol. 114, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. A. C. Bowling, J. B. Schulz, R. H. Brown Jr., and M. F. Beal, “Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 61, no. 6, pp. 2322–2325, 1993. View at Publisher · View at Google Scholar · View at Scopus
  90. W. A. Pedersen, W. Fu, J. N. Keller et al., “Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients,” Annals of Neurology, vol. 44, no. 5, pp. 819–824, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Shi, J. Gal, D. M. Kwinter, X. Liu, and H. Zhu, “Mitochondrial dysfunction in amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Pajouhesh and G. R. Lenz, “Medicinal chemical properties of successful central nervous system drugs,” NeuroRx, vol. 2, no. 4, pp. 541–553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. J. M. Matés, C. Pérez-Gómez, and I. N. De Castro, “Antioxidant enzymes and human diseases,” Clinical Biochemistry, vol. 32, no. 8, pp. 595–603, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Deponte, “Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes,” Biochimica et Biophysica Acta, vol. 1830, no. 5, pp. 3217–3266, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. S. G. Rhee, S. W. Kang, T.-S. Chang, W. Jeong, and K. Kim, “Peroxiredoxin, a novel family of peroxidases,” IUBMB Life, vol. 52, no. 1-2, pp. 35–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Gal, H. Zheng, M. Fridkin, and M. B. H. Youdim, “Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion,” Journal of Neurochemistry, vol. 95, no. 1, pp. 79–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. N. A. Simonian and J. T. Coyle, “Oxidative stress in neurodegenerative diseases,” Annual Review of Pharmacology and Toxicology, vol. 36, pp. 83–106, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Harrison, “Structure and function of xanthine oxidoreductase: where are we now?” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 774–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. D. F. V. Lewis, “Oxidative stress: the role of cytochromes P450 in oxygen activation,” Journal of Chemical Technology and Biotechnology, vol. 77, no. 10, pp. 1095–1100, 2002. View at Publisher · View at Google Scholar · View at Scopus