Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 4848015, 9 pages
http://dx.doi.org/10.1155/2016/4848015
Research Article

Effects of 12-Week Endurance Training at Natural Low Altitude on the Blood Redox Homeostasis of Professional Adolescent Athletes: A Quasi-Experimental Field Trial

1Department of Physical Education, Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong
2Faculty of Education, University of Macau, Macau
3College of Physical Education, Liaoning Normal University, Dalian, Liaoning 116029, China
4Laboratory of Clinical Chemistry and Hematology, Academic Hospital of Parma, 43126 Parma, Italy
5School of Physical Education and Sports, Macao Polytechnic Institute, Macau
6College of Physical Education, Hebei Normal University, Shijiazhuang, Hebei 050024, China

Received 1 July 2015; Revised 27 August 2015; Accepted 31 August 2015

Academic Editor: Vincent Pialoux

Copyright © 2016 Tomas K. Tong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dosek, H. Ohno, Z. Acs, A. W. Taylor, and Z. Radak, “High altitude and oxidative stress,” Respiratory Physiology & Neurobiology, vol. 158, no. 2-3, pp. 128–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Mohanraj, A. J. Merola, V. P. Wright, and T. L. Clanton, “Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions,” Journal of Applied Physiology, vol. 84, no. 6, pp. 1960–1966, 1998. View at Google Scholar · View at Scopus
  3. J. M. McCord, “Oxygen-derived free radicals in postischemic tissue injury,” The New England Journal of Medicine, vol. 312, no. 3, pp. 159–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Renzing, S. Hansen, and D. P. Lane, “Oxidative stress is involved in the UV activation of p53,” Journal of Cell Science, vol. 109, no. 5, pp. 1105–1112, 1996. View at Google Scholar · View at Scopus
  5. P. Joanny, J. Steinberg, P. Robach et al., “Operation Everest III (Comex'97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise,” Resuscitation, vol. 49, no. 3, pp. 307–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Nakanishi, F. Tajima, A. Nakamura et al., “Effects of hypobaric hypoxia on antioxidant enzymes in rats,” Journal of Physiology, vol. 489, no. 3, pp. 869–876, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Finaud, G. Lac, and E. Filaire, “Oxidative stress: relationship with exercise and training,” Sports Medicine, vol. 36, no. 4, pp. 327–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Radák, Z. Zhao, E. Koltai, H. Ohno, and M. Atalay, “Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling,” Antioxidants & Redox Signaling, vol. 18, no. 10, pp. 1208–1246, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. O. F. Araneda, C. García, N. Lagos et al., “Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness,” European Journal of Applied Physiology, vol. 95, no. 5-6, pp. 383–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Debevec, V. Pialoux, I. B. Mekjavic, O. Eiken, P. Mury, and G. P. Millet, “Moderate exercise blunts oxidative stress induced by normobaric hypoxic confinement,” Medicine and Science in Sports and Exercise, vol. 46, no. 1, pp. 33–41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. P. U. Saunders, D. B. Pyne, and C. J. Gore, “Endurance training at altitude,” High Altitude Medicine & Biology, vol. 10, no. 2, pp. 135–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Friedmann-Bette, “Classical altitude training,” Scandinavian Journal of Medicine & Science in Sports, vol. 18, supplement 1, pp. 11–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Pialoux, R. Mounier, E. Rock et al., “Effects of the ‘live high-train low’ method on prooxidant/antioxidant balance on elite athletes,” European Journal of Clinical Nutrition, vol. 63, no. 6, pp. 756–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Pialoux, R. Mounier, E. Rock et al., “Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes,” International Journal of Sports Medicine, vol. 30, no. 2, pp. 87–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. D. Myer, N. Jayanthi, J. P. Difiori et al., “Sport specialization, part I: does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes?” Sports Health: A Multidisciplinary Approach, vol. 7, no. 5, pp. 437–442, 2015. View at Publisher · View at Google Scholar
  16. T. K. Tong, H. Lin, G. Lippi, J. Nie, and Y. Tian, “Serum oxidant and antioxidant status in adolescents undergoing professional endurance sports training,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 741239, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. T. K. Tong, Z. Kong, H. Lin, G. Lippi, H. Zhang, and J. Nie, “Serum oxidant and antioxidant status following an all-out 21-km run in adolescent runners undergoing professional training—a one-year prospective trial,” International Journal of Molecular Sciences, vol. 14, no. 7, pp. 15167–15178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. M. V. Miles, P. S. Horn, P. H. Tang et al., “Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults,” Clinica Chimica Acta, vol. 347, no. 1-2, pp. 139–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Riddell, “The endocrine response and substrate utilization during exercise in children and adolescents,” Journal of Applied Physiology, vol. 105, no. 2, pp. 725–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Zanconato, S. Buchthal, T. J. Barstow, and D. M. Cooper, “31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults,” Journal of Applied Physiology, vol. 74, no. 5, pp. 2214–2218, 1993. View at Google Scholar · View at Scopus
  21. C. Foster, J. A. Florhaug, J. Franklin et al., “A new approach to monitoring exercise training,” Journal of Strength and Conditioning Research, vol. 15, no. 1, pp. 109–115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gougoura, M. G. Nikolaidis, I. A. Kostaropoulos, A. Z. Jamurtas, G. Koukoulis, and D. Kouretas, “Increased oxidative stress indices in the blood of child swimmers,” European Journal of Applied Physiology, vol. 100, no. 2, pp. 235–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Del Rio, A. J. Stewart, and N. Pellegrini, “A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 15, no. 4, pp. 316–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Publisher · View at Google Scholar · View at Scopus
  25. D. G. Hafeman, R. A. Sunde, and W. G. Hoekstra, “Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat,” The Journal of Nutrition, vol. 104, no. 5, pp. 580–587, 1974. View at Google Scholar · View at Scopus
  26. I. F. F. Benzie and J. J. Strain, “Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration,” in Methods in Enzymology, vol. 299, chapter 2, pp. 15–27, Elsevier, 1999. View at Publisher · View at Google Scholar
  27. A. G. Vij, R. Dutta, and N. K. Satija, “Acclimatization to oxidative stress at high altitude,” High Altitude Medicine & Biology, vol. 6, no. 4, pp. 301–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Hellsten-Westing, P. D. Balsom, B. Norman, and B. Sjodin, “The effect of high-intensity training on purine metabolism in man,” Acta Physiologica Scandinavica, vol. 149, no. 4, pp. 405–412, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. C. G. Stathis, M. F. Carey, A. Hayes, A. P. Garnham, and R. J. Snow, “Sprint training reduces urinary purine loss following intense exercise in humans,” Applied Physiology, Nutrition and Metabolism, vol. 31, no. 6, pp. 702–708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Altschuld, L. M. Gamelin, R. E. Kelley, M. R. Lambert, L. E. Apel, and G. P. Brierley, “Degradation and resynthesis of adenine nucleotides in adult rat heart myocytes,” The Journal of Biological Chemistry, vol. 262, no. 28, pp. 13527–13533, 1987. View at Google Scholar · View at Scopus
  31. Z. Radák, K. Lee, W. Choi et al., “Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats,” European Journal of Applied Physiology and Occupational Physiology, vol. 69, no. 5, pp. 392–395, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Jefferson, E. Escudero, M.-E. Hurtado et al., “Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia,” American Journal of Kidney Diseases, vol. 39, no. 6, pp. 1135–1142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. G. K. Glantzounis, E. C. Tsimoyiannis, A. M. Kappas, and D. A. Galaris, “Uric acid and oxidative stress,” Current Pharmaceutical Design, vol. 11, no. 32, pp. 4145–4151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Duarte, J. F. Magalhães, L. Monteiro, A. Almeida-Dias, J. M. C. Soares, and H.-J. Appell, “Exercise-induced signs of muscle overuse in children,” International Journal of Sports Medicine, vol. 20, no. 2, pp. 103–108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. R. D. Baker, S. S. Baker, K. LaRosa, C. Whitney, and P. E. Newburger, “Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B,” Archives of Biochemistry and Biophysics, vol. 304, no. 1, pp. 53–57, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Agostoni, G. C. Gerli, L. Beretta et al., “Erythrocyte antioxidant enzymes and selenium serum levels in an andean population,” Clinica Chimica Acta, vol. 133, no. 2, pp. 153–157, 1983. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Antunes, D. Han, and E. Cadenas, “Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions,” Free Radical Biology & Medicine, vol. 33, no. 9, pp. 1260–1267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Saito and T. Saito, “Dynamics of trace elements and metal-dependent enzymes in stomach cancer patients,” in Food Factors for Cancer Prevention, H. Ohigashi, T. Osawa, J. Terao, S. Watanabe, and T. Yoshikawa, Eds., pp. 383–388, Springer, Tokyo, Japan, 1997. View at Publisher · View at Google Scholar
  39. K. Margonis, I. G. Fatouros, A. Z. Jamurtas et al., “Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis,” Free Radical Biology & Medicine, vol. 43, no. 6, pp. 901–910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Dotan, D. Lichtenberg, and I. Pinchuk, “Lipid peroxidation cannot be used as a universal criterion of oxidative stress,” Progress in Lipid Research, vol. 43, no. 3, pp. 200–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Veskoukis, M. G. Nikolaidis, A. Kyparos, and D. Kouretas, “Blood reflects tissue oxidative stress depending on biomarker and tissue studied,” Free Radical Biology & Medicine, vol. 47, no. 10, pp. 1371–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-C. Chung, A. H. Goldfarb, A. Z. Jamurtas, S. S. Hegde, and J. Lee, “Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women,” Medicine & Science in Sports & Exercise, vol. 31, no. 3, pp. 409–413, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. D. P. Marin, A. P. Bolin, R. De Cassia Macedo Dos Santos, R. Curi, and R. Otton, “Testosterone suppresses oxidative stress in human neutrophils,” Cell Biochemistry and Function, vol. 28, no. 5, pp. 394–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Zalavras, I. G. Fatouros, C. K. Deli et al., “Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 283921, 17 pages, 2015. View at Publisher · View at Google Scholar