Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016 (2016), Article ID 5638943, 14 pages
http://dx.doi.org/10.1155/2016/5638943
Research Article

Notch1 Pathway Protects against Burn-Induced Myocardial Injury by Repressing Reactive Oxygen Species Production through JAK2/STAT3 Signaling

1Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
2Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
3First Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

Received 28 September 2015; Accepted 9 November 2015

Academic Editor: Rajesh Mohanraj

Copyright © 2016 Weixia Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Kallinen, K. Maisniemi, T. Böhling, E. Tukiainen, and V. Koljonen, “Multiple organ failure as a cause of death in patients with severe burns,” Journal of Burn Care & Research, vol. 33, no. 2, pp. 206–211, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Rocha, M. Eduardo-Figueira, A. Barateiro et al., “Erythropoietin reduces acute lung injury and multiple organ failure/dysfunction associated to a scald-burn inflammatory injury in the rat,” Inflammation, vol. 38, no. 1, pp. 312–326, 2015. View at Publisher · View at Google Scholar
  3. J. W. Horton, N. M. Garcia, D. J. White, and J. Keffer, “Postburn cardiac contractile function and biochemical markers of postburn cardiac injury,” Journal of the American College of Surgeons, vol. 181, no. 4, pp. 289–298, 1995. View at Google Scholar · View at Scopus
  4. Y. Zhang, S.-J. Lv, H. Yan et al., “Effects of glycine supplementation on myocardial damage and cardiac function after severe burn,” Burns, vol. 39, no. 4, pp. 729–735, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Jiang, W. Liu, J. Deng et al., “Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors,” Free Radical Biology and Medicine, vol. 60, pp. 292–299, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Liu, H. B. Ren, X. L. Chen et al., “Puerarin attenuates severe burn-induced acute myocardial injury in rats,” Burns, 2015. View at Publisher · View at Google Scholar
  7. D.-X. Zhang, H. Yan, J.-Y. Hu et al., “Identification of mitochondria translation elongation factor Tu as a contributor to oxidative damage of postburn myocardium,” Journal of Proteomics, vol. 77, pp. 469–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Geisler and M. Strazzabosco, “Emerging roles of Notch signaling in liver disease,” Hepatology, vol. 61, no. 1, pp. 382–392, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Gude, E. Joyo, H. Toko et al., “Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells,” Basic Research in Cardiology, vol. 110, no. 3, article 29, 2015. View at Publisher · View at Google Scholar
  10. T. Quillard and B. Charreau, “Impact of Notch signaling on inflammatory responses in cardiovascular disorders,” International Journal of Molecular Sciences, vol. 14, no. 4, pp. 6863–6888, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Felician, C. Collesi, M. Lusic et al., “Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction,” Circulation Research, vol. 115, no. 7, pp. 636–649, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nemir, M. Metrich, I. Plaisance et al., “The Notch pathway controls fibrotic and regenerative repair in the adult heart,” European Heart Journal, vol. 35, no. 32, pp. 2174–2185, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Pei, Q. Yu, Q. Xue et al., “Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress,” Basic Research in Cardiology, vol. 108, no. 5, article 373, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H.-C. Yu, H.-Y. Qin, F. He et al., “Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling,” Hepatology, vol. 54, no. 3, pp. 979–988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Wang, H. Du, C.-C. Zhou et al., “Intracellular NAMPT–NAD+–SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors,” Cardiovascular Research, vol. 104, no. 3, pp. 477–488, 2014. View at Publisher · View at Google Scholar
  16. X. Bai, L. Fan, T. He et al., “SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling,” Scientific Reports, vol. 5, article 10277, 2015. View at Publisher · View at Google Scholar
  17. W.-F. Zhang, X.-X. Zhu, D.-H. Hu, C.-F. Xu, Y.-C. Wang, and G.-F. Lv, “Intensive insulin treatment attenuates burn-initiated acute lung injury in rats: role of the protective endothelium,” Journal of Burn Care & Research, vol. 32, no. 3, pp. e51–e58, 2011. View at Publisher · View at Google Scholar
  18. M. Krzyzaniak, G. Cheadle, C. Peterson et al., “Burn-induced acute lung injury requires a functional toll-like receptor 4,” Shock, vol. 36, no. 1, pp. 24–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Liu, K. Lian, L. Zhang et al., “TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury,” Basic Research in Cardiology, vol. 109, article 415, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Xiao, M. Teng, Q. Zhang, X.-H. Shi, and Y.-S. Huang, “Myocardial autophagy after severe burn in rats,” PLoS ONE, vol. 7, no. 6, Article ID e39488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Yao, J. G. Wigginton, D. L. Maass et al., “Estrogen-provided cardiac protection following burn trauma is mediated through a reduction in mitochondria-derived DAMPs,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 306, no. 6, pp. H882–H894, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. W. X. Cai, L. Liang, L. Wang et al., “Inhibition of Notch signaling leads to increased intracellular ROS by up-regulating Nox4 expression in primary HUVECs,” Cellular Immunology, vol. 287, no. 2, pp. 129–135, 2014. View at Publisher · View at Google Scholar
  23. C. Caliceti, P. Nigro, P. Rizzo, and R. Ferrari, “ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology,” BioMed Research International, vol. 2014, Article ID 318714, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. H.-C. Yu, L. Bai, S.-Q. Yue et al., “Notch signal protects non-parenchymal cells from ischemia/reperfusion injury in vitro by repressing ROS,” Annals of Hepatology, vol. 12, no. 5, pp. 815–821, 2013. View at Google Scholar · View at Scopus
  25. O. S. Kornfeld, S. Hwang, M. H. Disatnik, C. H. Chen, N. Qvit, and D. Mochly-Rosen, “Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases,” Circulation Research, vol. 116, no. 11, pp. 1783–1799, 2015. View at Publisher · View at Google Scholar
  26. H. Ha, J. Park, Y. S. Kim, and H. Endou, “Oxidative stress and chronic allograft nephropathy,” Yonsei Medical Journal, vol. 45, no. 6, pp. 1049–1052, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Wang, C. X. Hai, X. Liang, S. X. Yu, W. Zhang, and Y. L. Li, “The protective effects of Acanthopanax senticosus Harms aqueous extracts against oxidative stress: role of Nrf2 and antioxidant enzymes,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 424–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Takeda, K. Noguchi, W. Shi et al., “Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3801–3804, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Boengler, D. Hilfiker-Kleiner, H. Drexler, G. Heusch, and R. Schulz, “The myocardial JAK/STAT pathway: from protection to failure,” Pharmacology and Therapeutics, vol. 120, no. 2, pp. 172–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-K. Park, M. K. Dahmer, and M. W. Quasney, “MAPK and JAK-STAT signaling pathways are involved in the oxidative stress-induced decrease in expression of surfactant protein genes,” Cellular Physiology and Biochemistry, vol. 30, no. 2, pp. 334–346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Terrell, P. R. Crisostomo, G. M. Wairiuko, M. Wang, E. D. Morrell, and D. R. Meldrum, “JAK/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart,” Shock, vol. 26, no. 3, pp. 226–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-H. Wen, Y. Li, C. Li et al., “Ischemic postconditioning during reperfusion attenuates intestinal injury and mucosal cell apoptosis by inhibiting JAK/STAT signaling activation,” Shock, vol. 38, no. 4, pp. 411–419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Qiao, X. Mao, Y. Wang et al., “Remifentanil preconditioning reduces postischemic myocardial infarction and improves left ventricular performance via activation of the janus activated kinase-2/signal transducers and activators of transcription-3 signal pathway and subsequent inhibition of glycogen synthase kinase-3β in rats,” Critical Care Medicine, 2015. View at Publisher · View at Google Scholar
  34. L. Wu, J. L. Tan, Z. H. Wang et al., “ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca2+ overload and contractile dysfunction via the JAK2/STAT3 pathway,” Journal of Molecular and Cellular Cardiology, vol. 81, pp. 150–161, 2015. View at Publisher · View at Google Scholar
  35. Y. Yang, W. Duan, Z. Jin et al., “JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury,” Journal of Pineal Research, vol. 55, no. 3, pp. 275–286, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Li, W. Zhu, J. Tao et al., “Fasudil protects the heart against ischemia-reperfusion injury by attenuating endoplasmic reticulum stress and modulating SERCA activity: the differential role for PI3K/Akt and JAK2/STAT3 signaling pathways,” PLoS ONE, vol. 7, no. 10, Article ID e48115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. H. F. Luan, Z. B. Zhao, Q. H. Zhao, P. Zhu, M. Y. Xiu, and Y. Ji, “Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway,” Brazilian Journal of Medical and Biological Research, vol. 45, no. 10, pp. 898–905, 2012. View at Google Scholar
  38. W. Duan, Y. Yang, W. Yi et al., “New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin,” PLoS ONE, vol. 8, no. 3, Article ID e57941, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. N. A. Gude, G. Emmanuel, W. Wu et al., “Activation of Notch-mediated protective signaling in the myocardium,” Circulation Research, vol. 102, no. 9, pp. 1025–1035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Cao, Y.-H. Xie, X.-Q. Li et al., “Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways,” Basic Research in Cardiology, vol. 106, no. 6, pp. 1207–1220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Lu, T. Costantini, N. E. Lopez et al., “Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model,” Journal of Cellular and Molecular Medicine, vol. 17, no. 5, pp. 664–671, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. G. F. Lv, M. L. Dong, D. H. Hu et al., “Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns,” Journal of Burn Care & Research, vol. 32, no. 6, pp. 591–599, 2011. View at Publisher · View at Google Scholar
  43. G. Chang, D. Zhang, H. Yu et al., “Cardioprotective effects of exenatide against oxidative stress-induced injury,” International Journal of Molecular Medicine, vol. 32, no. 5, pp. 1011–1020, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rotte, V. Pasham, W. Yang et al., “Phosphoinositide 3-kinase-dependent regulation of Na+/H+ exchanger in dendritic cells,” Pflügers Archiv—European Journal of Physiology, vol. 460, no. 6, pp. 1087–1096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. M. Yeves, M. C. Villa-Abrille, N. G. Pérez, A. J. Medina, E. M. Escudero, and I. L. Ennis, “Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity,” Journal of Molecular and Cellular Cardiology, vol. 76, pp. 186–195, 2014. View at Publisher · View at Google Scholar · View at Scopus