Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 6906712, 8 pages
http://dx.doi.org/10.1155/2016/6906712
Review Article

The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China

Received 29 January 2016; Revised 16 May 2016; Accepted 26 May 2016

Academic Editor: Qian Liu

Copyright © 2016 Jiyuan Bu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Cerebrovascular Disorders, World Health Organization, Geneva, Switzerland, 1978.
  2. A. E. Hansen and G. O. Burr, “Essential fatty acids and human nutrition,” Journal of the American Medical Association, vol. 132, no. 14, pp. 855–859, 1946. View at Publisher · View at Google Scholar
  3. P. C. Calder, “Functional roles of fatty acids and their effects on human health,” Journal of Parenteral and Enteral Nutrition, vol. 39, supplement 1, pp. 18S–32S, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. DeFilippis and L. S. Sperling, “Understanding omega-3's,” American Heart Journal, vol. 151, no. 3, pp. 564–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. IUPAC-IUB Commission on Biochemical Nomenclature, “The nomenclature of lipids,” Lipids, vol. 12, no. 6, pp. 455–468, 1977. View at Publisher · View at Google Scholar
  6. C. Gomez-Candela, M. C. Roldan Puchalt, S. Palma Milla, B. Lopez Plaza, and L. Bermejo, “The role of omega-3 fatty acids in diets,” Journal of the American College of Nutrition, vol. 34, supplement 1, pp. 42–47, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Burdge, “α-linolenic acid metabolism in men and women: nutritional and biological implications,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 2, pp. 137–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. L. L. Goyens, M. E. Spilker, P. L. Zock, M. B. Katan, and R. P. Mensink, “Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio,” The American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 44–53, 2006. View at Google Scholar · View at Scopus
  9. L. M. Arterburn, E. B. Hall, and H. Oken, “Distribution, interconversion, and dose response of n-3 fatty acids in humans,” The American Journal of Clinical Nutrition, vol. 83, no. 6, supplement, pp. 1467S–1476S, 2006. View at Google Scholar · View at Scopus
  10. C. Gravaghi, K. M. D. La Perle, P. Ogrodwski et al., “Cox-2 expression, PGE2 and cytokines production are inhibited by endogenously synthesized n-3 PUFAs in inflamed colon of fat-1 mice,” The Journal of Nutritional Biochemistry, vol. 22, no. 4, pp. 360–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. X. Kang, “Fat-1 transgenic mice: a new model for omega-3 research,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 77, no. 5-6, pp. 263–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bilal, O. Haworth, L. Wu, K. H. Weylandt, B. D. Levy, and J. X. Kang, “Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, vol. 1812, no. 9, pp. 1164–1169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Griffitts, D. Saunders, Y. A. Tesiram et al., “Non-mammalian fat-1 gene prevents neoplasia when introduced to a mouse hepatocarcinogenesis model. Omega-3 fatty acids prevent liver neoplasia,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, vol. 1801, no. 10, pp. 1133–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ghasemifard, G. M. Turchini, and A. J. Sinclair, “Omega-3 long chain fatty acid ‘bioavailability’: a review of evidence and methodological considerations,” Progress in Lipid Research, vol. 56, pp. 92–108, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Kaur, V. Chugh, and A. K. Gupta, “Essential fatty acids as functional components of foods-a review,” Journal of Food Science and Technology, vol. 51, no. 10, pp. 2289–2303, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Mijalski and B. Silver, “TIA management: should TIA patients be admitted? Should TIA patients get combination antiplatelet therapy?” The Neurohospitalist, vol. 5, no. 3, pp. 151–160, 2015. View at Publisher · View at Google Scholar
  17. J. Sun, Z. Ling, F. Wang et al., “Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis,” Neuroscience Letters, vol. 613, pp. 30–35, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Zhang, Y. Zhang, H. Li et al., “Antioxidant and anti-excitotoxicity effect of Gualou Guizhi decoction on cerebral ischemia/reperfusion injury in rats,” Experimental and Therapeutic Medicine, vol. 9, no. 6, pp. 2121–2126, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. P. H. Chan, “Role of oxidants in ischemic brain damage,” Stroke, vol. 27, no. 6, pp. 1124–1129, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Saito and K. Nakatsugawa, “Increased susceptibility of liver to lipid peroxidation after ingestion of a high fish oil diet,” International Journal for Vitamin and Nutrition Research, vol. 64, no. 2, pp. 144–151, 1994. View at Google Scholar · View at Scopus
  21. M. Fujimura, Y. Morita-Fujimura, N. Noshita, T. Sugawara, M. Kawase, and P. H. Chan, “The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice,” The Journal of Neuroscience, vol. 20, no. 8, pp. 2817–2824, 2000. View at Google Scholar · View at Scopus
  22. A. L. Sverdlov, A. Elezaby, F. Qin et al., “Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of dietinduced metabolic heart disease,” Journal of the American Heart Association, vol. 5, no. 1, article e002555, 2016. View at Publisher · View at Google Scholar
  23. N. P. Visavadiya, S. P. Patel, J. L. VanRooyen, P. G. Sullivan, and A. G. Rabchevsky, “Cellular and subcellular oxidative stress parameters following severe spinal cord injury,” Redox Biology, vol. 8, pp. 59–67, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. T. S. Anthonymuthu, E. M. Kenny, and H. Bayir, “Therapies targeting lipid peroxidation in traumatic brain injury,” Brain Research, vol. 1640, pp. 57–76, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Riahi, G. Cohen, O. Shamni, and S. Sasson, “Signaling and cytotoxic functions of 4-hydroxyalkenals,” American Journal of Physiology—Endocrinology and Metabolism, vol. 299, no. 6, pp. E879–E886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Guichardant, S. Bacot, P. Molière, and M. Lagarde, “Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 75, no. 3, pp. 179–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. K. Irmak, E. Fadillioglu, S. Sogut et al., “Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain,” Cell Biochemistry and Function, vol. 21, no. 3, pp. 283–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. K. Heywood and D. A. Lee, “Bioenergetic reprogramming of articular chondrocytes by exposure to exogenous and endogenous reactive oxygen species and its role in the anabolic response to low oxygen,” Journal of Tissue Engineering and Regenerative Medicine, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Sugawara, N. Noshita, A. Lewen et al., “Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation,” Journal of Neuroscience, vol. 22, no. 1, pp. 209–217, 2002. View at Google Scholar · View at Scopus
  30. B. Wang, L. Li, J. Fu et al., “Effects of long-chain and medium-chain fatty acids on apoptosis and oxidative stress in human liver cells with steatosis,” Journal of Food Science, vol. 81, no. 3, pp. H794–H800, 2016. View at Publisher · View at Google Scholar
  31. E. Sawicka, A. Lisowska, P. Kowal, and A. Długosz, “The role of oxidative stress in bladder cancer,” Postępy Higieny i Medycyny Doświadczalnej, vol. 69, pp. 744–752, 2015. View at Publisher · View at Google Scholar
  32. O. A. Ozen, M. Cosar, O. Sahin et al., “The protective effect of fish n-3 fatty acids on cerebral ischemia in rat prefrontal cortex,” Neurological Sciences, vol. 29, no. 3, pp. 147–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. C. S. Seet, C.-Y. J. Lee, B. P. L. Chan et al., “Oxidative damage in ischemic stroke revealed using multiple biomarkers,” Stroke, vol. 42, no. 8, pp. 2326–2329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. A. Seifert and K. R. Pennypacker, “Molecular and cellular immune responses to ischemic brain injury,” Translational Stroke Research, vol. 5, no. 5, pp. 543–553, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Shirley, E. N. Ord, and L. M. Work, “Oxidative stress and the use of antioxidants in stroke,” Antioxidants, vol. 3, no. 3, pp. 472–501, 2014. View at Publisher · View at Google Scholar
  36. L. Rebiger, S. Lenzen, and I. Mehmeti, “Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species,” Bioscience Reports, vol. 36, no. 2, Article ID e00306, 2016. View at Publisher · View at Google Scholar
  37. D.-Y. Yang, H.-C. Pan, Y.-J. Yen et al., “Detrimental effects of post-treatment with fatty acids on brain injury in ischemic rats,” NeuroToxicology, vol. 28, no. 6, pp. 1220–1229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Nguemeni, B. Delplanque, C. Rovère et al., “Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke,” Pharmacological Research, vol. 61, no. 3, pp. 226–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Ueda, T. Inaba, C. Nito, N. Kamiya, and Y. Katayama, “Therapeutic impact of eicosapentaenoic acid on ischemic brain damage following transient focal cerebral ischemia in rats,” Brain Research, vol. 1519, pp. 95–104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-Y. Chang, Y.-H. Kuan, J.-R. Li et al., “Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats,” The Journal of Nutritional Biochemistry, vol. 24, no. 12, pp. 2127–2137, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Zhang, S. Wang, L. Mao et al., “Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1,” Journal of Neuroscience, vol. 34, no. 5, pp. 1903–1915, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes,” Free Radical Biology and Medicine, vol. 11, no. 1, pp. 81–128, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Wakabayashi, A. T. Dinkova-Kostova, W. D. Holtzclaw et al., “Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2040–2045, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Kobayashi, M.-I. Kang, H. Okawa et al., “Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7130–7139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Xue, Z. Yang, X. Wang, and H. Shi, “Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway,” PLoS ONE, vol. 7, no. 10, Article ID e45990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. Y.-C. Yang, C.-K. Lii, Y.-L. Wei et al., “Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways,” Journal of Nutritional Biochemistry, vol. 24, no. 1, pp. 204–212, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Zhang, J. Li, J. Ma et al., “The relevance of Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 3897250, 11 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Ploughman, M. W. Austin, L. Glynn, and D. Corbett, “The effects of poststroke aerobic exercise on neuroplasticity: a systematic review of animal and clinical studies,” Translational Stroke Research, vol. 6, no. 1, pp. 13–28, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Kawano, J. Anrather, P. Zhou et al., “Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity,” Nature Medicine, vol. 12, no. 2, pp. 225–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Zúñiga, M. Cancino, F. Medina et al., “N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury,” PLoS ONE, vol. 6, no. 12, Article ID e28502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J.-M. Lee, M. C. Grabb, G. J. Zipfel, and D. W. Choi, “Brain tissue responses to ischemia,” Journal of Clinical Investigation, vol. 106, no. 6, pp. 723–731, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. T.-J. Song, H.-J. Cho, Y. Chang et al., “Low plasma proportion of omega 3-polyunsaturated fatty acids predicts poor outcome in acute non-cardiogenic ischemic stroke patients,” Journal of Stroke, vol. 17, no. 2, pp. 168–176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Belayev, L. Khoutorova, K. D. Atkins, and N. G. Bazan, “Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia,” Stroke, vol. 40, no. 9, pp. 3121–3126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. D. G. C. de Souza, C. M. S. Conde, C. M. Laflôr, F. L. Sicuro, and E. Bouskela, “N-3 PUFA induce microvascular protective changes during ischemia/reperfusion,” Lipids, vol. 50, no. 1, pp. 23–37, 2015. View at Publisher · View at Google Scholar · View at Scopus
  55. B. R. Duling, “The preparation and use of the hamster cheek pouch for studies of the microcirculation,” Microvascular Research, vol. 5, no. 3, pp. 423–429, 1973. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Choi-Kwon, K.-A. Park, H.-J. Lee et al., “Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil,” Developmental Brain Research, vol. 152, no. 1, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. C. H. Nijboer, M. A. van der Kooij, F. van Bel, F. Ohl, C. J. Heijnen, and A. Kavelaars, “Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 812–821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Liu, H. Wang, Y. Zhu, L. Chen, Y. Qu, and Y. Zhu, “The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway,” Brain Research, vol. 1445, pp. 73–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Li, D. He, X. Zhang et al., “Protective effect of celastrol in rat cerebral ischemia model: down-regulating p-JNK, p-c-Jun and NF-κB,” Brain Research, vol. 1464, pp. 8–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Y. Oh, S. Talukdar, E. J. Bae et al., “GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects,” Cell, vol. 142, no. 5, pp. 687–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. K. H. Weylandt, C.-Y. Chiu, B. Gomolka, S. F. Waechter, and B. Wiedenmann, “Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Omega-3 fatty acids and their resolvin/protectin mediators,” Prostaglandins and Other Lipid Mediators, vol. 97, no. 3-4, pp. 73–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. G. J. E. Rinkel, J. Van Gijn, and E. P. M. Wijdicks, “Subarachnoid hemorrhage without detectable aneurysm: a review of the causes,” Stroke, vol. 24, no. 9, pp. 1403–1409, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. J. van Gijn and G. J. E. Rinkel, “Subarachnoid haemorrhage: diagnosis, causes and management,” Brain, vol. 124, part 2, pp. 249–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. E. J. van Dijk, R. M. M. Hupperts, M. van der Jagt, H. W. C. Bijvoet, and D. Hasan, “Diagnosis of perimesencephalic nonaneurysmal subarachnoid hemorrhage with computed tomography,” Journal of Stroke and Cerebrovascular Diseases, vol. 10, no. 6, pp. 247–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. J. V. Gijn, K. J. Van Dongen, M. Vermeulen, and A. Hijdra, “Perimesencephalic hemorrhage: a nonaneurysmal and benign form of subarachnoid hemorrhage,” Neurology, vol. 35, no. 4, pp. 493–497, 1985. View at Publisher · View at Google Scholar · View at Scopus
  66. I. C. van der Schaaf, B. K. Velthuis, A. Gouw, and G. J. E. Rinkel, “Venous drainage in perimesencephalic hemorrhage,” Stroke, vol. 35, no. 7, pp. 1614–1618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. C. P. Marder, V. Narla, J. R. Fink, and K. R. Tozer Fink, “Subarachnoid hemorrhage: beyond aneurysms,” American Journal of Roentgenology, vol. 202, no. 1, pp. 25–37, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Etminan, “Aneurysmal subarachnoid hemorrhage—status quo and perspective,” Translational Stroke Research, vol. 6, no. 3, pp. 167–170, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Selim and K. N. Sheth, “Perihematoma edema: a potential translational target in intracerebral hemorrhage?” Translational Stroke Research, vol. 6, no. 2, pp. 104–106, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. H. H. Dietrich and R. G. Dacey Jr., “Molecular keys to the problems of cerebral vasospasm,” Neurosurgery, vol. 46, no. 3, pp. 517–530, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. X.-Y. Xiong and Q.-W. Yang, “Rethinking the roles of inflammation in the intracerebral hemorrhage,” Translational Stroke Research, vol. 6, no. 5, pp. 339–341, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. J. J. Provencio and N. Vora, “Subarachnoid hemorrhage and inflammation: bench to bedside and back,” Seminars in Neurology, vol. 25, no. 4, pp. 435–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Lucke-Wold, A. Logsdon, B. Manoranjan et al., “Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review,” International Journal of Molecular Sciences, vol. 17, no. 4, article 497, 2016. View at Publisher · View at Google Scholar
  74. M. Sato, E. Tani, H. Fujikawa, and K. Kaibuchi, “Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm,” Circulation Research, vol. 87, no. 3, pp. 195–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Yoon, J. D. Sherman, M. Zuccarello, and R. M. Rapoport, “Vasospasm following subarachnoid hemorrhage: evidence against functional upregulation of Rho kinase constrictor pathway,” Neurological Research, vol. 24, no. 4, pp. 392–394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Koji, Y. Nishikawa, M. Doi, K. Sakaki, and A. Ogawa, “Augmenting mechanism of contractile response to the stimulation of thromboxane A2-receptor in the middle cerebral artery of bovine,” The Japanese Society on Surgery for Cerebral Stroke, vol. 30, pp. 41–45, 2002. View at Google Scholar
  77. S. Shirao, S. Kashiwagi, M. Sato et al., “Sphingosylphosphorylcholine is a novel messenger for rho-kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C,” Circulation Research, vol. 91, no. 2, pp. 112–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Nakao, S. Kobayashi, K. Mogami et al., “Involvement of Src family protein tyrosine kinases in Ca2+ sensitization of coronary artery contraction mediated by a sphingosylphosphorylcholine-Rho-kinase pathway,” Circulation Research, vol. 91, no. 10, pp. 953–960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. J. G. Pilitsis, W. M. Coplin, M. H. O'Regan et al., “Free fatty acids in human cerebrospinal fluid following subarachnoid hemorrhage and their potential role in vasospasm: a preliminary observation,” Journal of Neurosurgery, vol. 97, no. 2, pp. 272–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Hirai, T. Terano, T. Hamazaki et al., “The effects of the oral administration of fish oil concentrate on the release and the metabolism of [14C]arachidonic acid and [14C]eicosapentaenoic acid by human platelets,” Thrombosis Research, vol. 28, no. 3, pp. 285–298, 1982. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Yoneda, S. Shirao, T. Kurokawa, H. Fujisawa, S. Kato, and M. Suzuki, “Does eicosapentaenoic acid (EPA) inhibit cerebral vasospasm in patients after aneurysmal subarachnoid hemorrhage?” Acta Neurologica Scandinavica, vol. 118, no. 1, pp. 54–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Yoneda, S. Shirao, J. Nakagawara, K. Ogasawara, T. Tominaga, and M. Suzuki, “A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: the EVAS study,” World Neurosurgery, vol. 81, no. 2, pp. 309–315, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Badjatia, D. Seres, A. Carpenter et al., “Free fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage,” Stroke, vol. 43, no. 3, pp. 691–696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. H. S. Pedersen, G. Mulvad, K. N. Seidelin, G. T. Malcom, and D. A. Boudreau, “N-3 fatty acids as a risk factor for haemorrhagic stroke,” The Lancet, vol. 353, no. 9155, pp. 812–813, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Park, S. Nam, H.-J. Yi, H.-J. Hong, and M. Lee, “Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke,” Nutrition Research, vol. 29, no. 11, pp. 812–818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Clarke, G. Herzberg, J. Peeling, R. Buist, and D. Corbett, “Dietary supplementation of omega-3 polyunsaturated fatty acids worsens forelimb motor function after intracerebral hemorrhage in rats,” Experimental Neurology, vol. 191, no. 1, pp. 119–127, 2005. View at Publisher · View at Google Scholar · View at Scopus