Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 7857186, 17 pages
http://dx.doi.org/10.1155/2016/7857186
Review Article

Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s Expectation Be Matched by the Reality?

School of Human Movement and Nutrition Science, The University of Queensland, Brisbane, Australia

Received 13 October 2015; Accepted 6 December 2015

Academic Editor: Ahmed Abdel Moneim

Copyright © 2016 Christine A. Houghton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Swank, “A prospective discussion of past international nutrition catastrophes—indications for the future,” Nutrition, vol. 13, no. 4, pp. 344–348, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Liu, “Health-promoting components of fruits and vegetables in the diet,” Advances in Nutrition, vol. 4, no. 3, pp. 384S–392S, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. James, S. Devaraj, P. Bellur, S. Lakkanna, J. Vicini, and S. Boddupalli, “Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli,” Nutrition Reviews, vol. 70, no. 11, pp. 654–665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nicoletti, “Nutraceuticals and botanicals: overview and perspectives,” International Journal of Food Sciences and Nutrition, vol. 63, supplement 1, pp. 2–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-G. Joost, M. J. Gibney, K. D. Cashman et al., “Personalised nutrition: status and perspectives,” British Journal of Nutrition, vol. 98, no. 1, pp. 26–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Ares, M. J. Nozal, and J. Bernal, “Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds,” Journal of Chromatography A, vol. 1313, pp. 78–95, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. D. E. Stevenson and R. D. Hurst, “Polyphenolic phytochemicals—just antioxidants or much more?” Cellular and Molecular Life Sciences, vol. 64, no. 22, pp. 2900–2916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Sies, “Polyphenols and health: update and perspectives,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 2–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Rémésy, “Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies,” The American Journal of Clinical Nutrition, vol. 81, no. 1, supplement, pp. 230S–242S, 2005. View at Google Scholar · View at Scopus
  10. B. Halliwell, “Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 107–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. J. Calabrese, “Hormesis: why it is important to toxicology and toxicologists,” Environmental Toxicology and Chemistry, vol. 27, no. 7, pp. 1451–1474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Pagliaro, C. Santolamazza, F. Simonelli, and S. Rubattu, “Phytochemical compounds and protection from cardiovascular diseases: a state of the art,” BioMed Research International, vol. 2015, Article ID 918069, 17 pages, 2015. View at Publisher · View at Google Scholar
  13. I. Herr and M. W. Büchler, “Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer,” Cancer Treatment Reviews, vol. 36, no. 5, pp. 377–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. W. Kensler, P. A. Egner, A. S. Agyeman et al., “Keap1-Nrf2 signaling: a target for cancer prevention by sulforaphane,” Topics in Current Chemistry, vol. 329, pp. 163–178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Boivin, S. Lamy, S. Lord-Dufour et al., “Antiproliferative and antioxidant activities of common vegetables: a comparative study,” Food Chemistry, vol. 112, no. 2, pp. 374–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. V. Higdon, B. Delage, D. E. Williams, and R. H. Dashwood, “Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis,” Pharmacological Research, vol. 55, no. 3, pp. 224–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Zhang, X.-O. Shu, Y.-B. Xiang et al., “Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality,” American Journal of Clinical Nutrition, vol. 94, no. 1, pp. 240–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Kang, A. Ascherio, and F. Grodstein, “Fruit and vegetable consumption and cognitive decline in aging women,” Annals of Neurology, vol. 57, no. 5, pp. 713–720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, P. Talalay, C.-G. Cho, and G. H. Posner, “A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2399–2403, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Prochaska, A. B. Santamaria, and P. Talalay, “Rapid detection of inducers of enzymes that protect against carcinogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2394–2398, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Singletary and C. MacDonald, “Inhibition of benzo[a]pyrene- and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells bydibenzoylmethane and sulforaphane,” Cancer Letters, vol. 155, no. 1, pp. 47–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. E. L. Cavalieri and E. G. Rogan, “Depurinating estrogen-DNA adducts in the etiology and prevention of breast and other human cancers,” Future Oncology, vol. 6, no. 1, pp. 75–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Madureira, F. T. Weiss, P. Van Midwoud, D. E. Helbling, S. J. Sturla, and K. Schirmer, “Systems toxicology approach to understand the kinetics of benzo(a)pyrene uptake, biotransformation, and DNA adduct formation in a liver cell model,” Chemical Research in Toxicology, vol. 27, no. 3, pp. 443–453, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, “Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9926–9930, 1994. View at Google Scholar
  25. J.-M. Lee, J. Li, D. A. Johnson et al., “Nrf2, a multi-organ protector?” The FASEB Journal, vol. 19, no. 9, pp. 1061–1066, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. F. Villeneuve, A. Lau, and D. D. Zhang, “Regulation of the Nrf2-keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases,” Antioxidants & Redox Signaling, vol. 13, no. 11, pp. 1699–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Cuendet, C. P. Oteham, R. C. Moon, and J. M. Pezzuto, “Quinone reductase induction as a biomarker for cancer chemoprevention,” Journal of Natural Products, vol. 69, no. 3, pp. 460–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Jaiswal, “Nrf2 signaling in coordinated activation of antioxidant gene expression,” Free Radical Biology and Medicine, vol. 36, no. 10, pp. 1199–1207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-M. Lee and J. A. Johnson, “An important role of Nrf2-ARE pathway in the cellular defense mechanism,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 2, pp. 139–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-J. Surh, J. K. Kundu, and H.-K. Na, “Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals,” Planta Medica, vol. 74, no. 13, pp. 1526–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. N. Lewis, J. Mele, J. D. Hayes, and R. Buffenstein, “Nrf2, a guardian of healthspan and gatekeeper of species longevity,” Integrative and Comparative Biology, vol. 50, no. 5, pp. 829–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Hart, R. Cohen, M. Norwood, and J. Stebbing, “The emerging harm of antioxidants in carcinogenesis,” Future Oncology, vol. 8, no. 5, pp. 535–548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Hu, C. Xu, G. Shen et al., “Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice,” Cancer Letters, vol. 243, no. 2, pp. 170–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M.-K. Kwak, N. Wakabayashi, K. Itoh, H. Motohashi, M. Yamamoto, and T. W. Kensler, “Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway: identification of novel gene clusters for cell survival,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8135–8145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Rahal, A. Kumar, V. Singh et al., “Oxidative stress, prooxidants, and antioxidants: the interplay,” BioMed Research International, vol. 2014, Article ID 761264, 19 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Valgimigli and R. Iori, “Antioxidant and pro-oxidant capacities of ITCs,” Environmental and Molecular Mutagenesis, vol. 50, no. 3, pp. 222–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. D. Brooks, V. G. Paton, and G. Vidanes, “Potent induction of phase 2 enzymes in human prostate cells by sulforaphane,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 9, pp. 949–954, 2001. View at Google Scholar · View at Scopus
  38. S.-D. Cho, G. Li, H. Hu et al., “Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells,” Nutrition and Cancer, vol. 52, no. 2, pp. 213–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. F. Abdull Razis and N. M. Noor, “Sulforaphane is superior to glucoraphanin in modulating carcinogen-metabolising enzymes in Hep G2 cells,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 7, pp. 4235–4238, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. M. G. Botti, M. G. Taylor, and N. P. Botting, “Studies on the mechanism of myrosinase—investigation of the effect of glycosyl acceptors on enzyme activity,” Journal of Biological Chemistry, vol. 270, no. 35, pp. 20530–20535, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Wu, H. Liang, Q. Yuan, T. Wang, and X. Yan, “Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin,” Carbohydrate Polymers, vol. 82, no. 3, pp. 613–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. D. Clarke, K. Riedl, D. Bella, S. J. Schwartz, J. F. Stevens, and E. Ho, “Comparison of isothiocyanate metabolite levels and histone deacetylase activity in human subjects consuming broccoli sprouts or broccoli supplement,” Journal of Agricultural and Food Chemistry, vol. 59, no. 20, pp. 10955–10963, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. G. R. De Nicola, M. Bagatta, E. Pagnotta et al., “Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts,” Food Chemistry, vol. 141, no. 1, pp. 297–303, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Jin, M. Wang, R. T. Rosen, and C.-T. Ho, “Thermal degradation of sulforaphane in aqueous solution,” Journal of Agricultural and Food Chemistry, vol. 47, no. 8, pp. 3121–3123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. A. T. Dinkova-Kostova, J. W. Fahey, and P. Talalay, “Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1),” Methods in Enzymology, vol. 382, pp. 423–448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. E. Nimni, B. Han, and F. Cordoba, “Are we getting enough sulfur in our diet?” Nutrition and Metabolism, vol. 4, article 24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. F. Grimble and G. K. Grimble, “Immunonutrition: role of sulfur amino acids, related amino acids, and polyamines,” Nutrition, vol. 14, no. 7-8, pp. 605–610, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. I. F. F. Benzie and S. Wachtel-Galor, “Vegetarian diets and public health: biomarker and redox connections,” Antioxidants & Redox Signaling, vol. 13, no. 10, pp. 1575–1591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. W. Fahey, Y. Zhang, and P. Talalay, “Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10367–10372, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. R. H. Dashwood, “Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables?” Chemico-Biological Interactions, vol. 110, no. 1-2, pp. 1–5, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. T. W. Kensler, G.-S. Qian, J.-G. Chen, and J. D. Groopman, “Translational strategies for cancer prevention in liver,” Nature Reviews Cancer, vol. 3, no. 5, pp. 321–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. T. M. Buetler, E. P. Gallagher, C. Wang, D. L. Stahl, J. D. Hayes, and D. L. Eaton, “Induction of phase I and phase II drug-metabolizing enzyme mRNA, protein, and activity by BHA, ethoxyquin, and oltipraz,” Toxicology and Applied Pharmacology, vol. 135, no. 1, pp. 45–57, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Wang, D. J. Tomso, B. N. Chorley et al., “Identification of polymorphic antioxidant response elements in the human genome,” Human Molecular Genetics, vol. 16, no. 10, pp. 1188–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 313–322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Stewart, E. Killeen, R. Naquin, S. Alam, and J. Alam, “Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium,” The Journal of Biological Chemistry, vol. 278, no. 4, pp. 2396–2402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Katoh, K. Iida, M.-I. Kang et al., “Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome,” Archives of Biochemistry and Biophysics, vol. 433, no. 2, pp. 342–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Kobayashi, M.-I. Kang, H. Okawa et al., “Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7130–7139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Taguchi, H. Motohashi, and M. Yamamoto, “Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution,” Genes to Cells, vol. 16, no. 2, pp. 123–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. A. Hinson, D. W. Roberts, and L. P. James, “Mechanisms of acetaminophen-induced liver necrosis,” Handbook of Experimental Pharmacology, vol. 196, pp. 369–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. I. M. Copple, C. E. Goldring, R. E. Jenkins et al., “The hepatotoxic metabolite of acetaminophen directly activates the keap1-Nrf2 cell defense system,” Hepatology, vol. 48, no. 4, pp. 1292–1301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Chen, Q. Fang, J. Zhang, D. Zhou, and Z. Wang, “Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage,” Journal of Neuroscience Research, vol. 89, no. 4, pp. 515–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Juge, R. F. Mithen, and M. Traka, “Molecular basis for chemoprevention by sulforaphane: a comprehensive review,” Cellular and Molecular Life Sciences, vol. 64, no. 9, pp. 1105–1127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Liska, M. Lyon, and D. S. Jones, “Detoxification and biotransformational imbalances,” Explore: The Journal of Science and Healing, vol. 2, no. 2, pp. 122–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Laso, S. Mas, M. J. Lafuente et al., “Induction of NAD(P)H quinone oxidoreductase by vegetables widely consumed in Catalonia, Spain,” Nutrition and Cancer, vol. 52, no. 1, pp. 49–58, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Talalay, “Chemoprotection against cancer by induction of Phase 2 enzymes,” BioFactors, vol. 12, no. 1–4, pp. 5–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Gao, A. T. Dinkova-Kostova, and P. Talalay, “Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15221–15226, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. M. L. Pall and S. Levine, “Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors,” Sheng Li Xue Bao, vol. 67, no. 1, pp. 1–18, 2015. View at Google Scholar
  68. P. C. Spiess, D. Kasahara, A. Habibovic et al., “Acrolein exposure suppresses antigen-induced pulmonary inflammation,” Respiratory Research, vol. 14, article 107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. A. L. Eggler, K. A. Gay, and A. D. Mesecar, “Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2,” Molecular Nutrition and Food Research, vol. 52, supplement 1, pp. S84–S94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002. View at Google Scholar · View at Scopus
  71. Y.-J. Lee and S.-H. Lee, “Sulforaphane induces antioxidative and antiproliferative responses by generating reactive oxygen species in human bronchial epithelial BEAS-2B cells,” Journal of Korean Medical Science, vol. 26, no. 11, pp. 1474–1482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. F. Holick, “Vitamin D: evolutionary, physiological and health perspectives,” Current Drug Targets, vol. 12, no. 1, pp. 4–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Schwab, V. Reynders, S. Loitsch, D. Steinhilber, O. Schröder, and J. Stein, “The dietary histone deacetylase inhibitor sulforaphane induces human β-defensin-2 in intestinal epithelial cells,” Immunology, vol. 125, no. 2, pp. 241–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. J. Berridge, “Vitamin D cell signalling in health and disease,” Biochemical and Biophysical Research Communications, vol. 460, no. 1, pp. 53–71, 2015. View at Publisher · View at Google Scholar
  75. X.-L. Chen and C. Kunsch, “Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases,” Current Pharmaceutical Design, vol. 10, no. 8, pp. 879–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. W. Fahey and P. Talalay, “Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 973–979, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. A. T. Dinkova-Kostova and P. Talalay, “NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 116–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. G. P. Sykiotis, I. G. Habeos, A. V. Samuelson, and D. Bohmann, “The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 1, pp. 41–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. J. H. Suh, S. V. Shenvi, B. M. Dixon et al., “Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3381–3386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. M. Rahman, G. P. Sykiotis, M. Nishimura, R. Bodmer, and D. Bohmann, “Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes,” Aging Cell, vol. 12, no. 4, pp. 554–562, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. A. T. Dinkova-Kostova and P. Talalay, “Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen,” Free Radical Biology and Medicine, vol. 29, no. 3-4, pp. 231–240, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. M. M. Iba and R. J. Caccavale, “Genotoxic bioactivation of constituents of a diesel exhaust particle extract by the human lung,” Environmental and Molecular Mutagenesis, vol. 54, no. 3, pp. 158–171, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. E. H. Jeffery and K. E. Stewart, “Upregulation of quinone reductase by glucosinolate hydrolysis products from dietary broccoli,” Methods in Enzymology, vol. 382, pp. 457–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. R. P. Robertson, “AIRarg and AIRgluc as predictors of insulin secretory reserve,” Transplantation Proceedings, vol. 36, no. 4, pp. 1040–1041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. W. Fahey, K. K. Stephenson, A. T. Dinkova-Kostova, P. A. Egner, T. W. Kensler, and P. Talalay, “Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes,” Carcinogenesis, vol. 26, no. 7, pp. 1247–1255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. T. A. Shapiro, J. W. Fahey, K. L. Wade, K. K. Stephenson, and P. Talalay, “Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables,” Cancer Epidemiology Biomarkers and Prevention, vol. 7, no. 12, pp. 1091–1100, 1998. View at Google Scholar · View at Scopus
  87. J. W. Fahey and T. W. Kensler, “Role of dietary supplements/nutraceuticals in chemoprevention through induction of cytoprotective enzymes,” Chemical Research in Toxicology, vol. 20, no. 4, pp. 572–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Yuan, L. Ji, L. Luo et al., “Quinone reductase (QR) inducers from Andrographis paniculata and identification of molecular target of andrographolide,” Fitoterapia, vol. 83, no. 8, pp. 1506–1513, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Yang and R. H. Liu, “Induction of phase II enzyme, quinone reductase, in murine hepatoma cells in vitro by grape extracts and selected phytochemicals,” Food Chemistry, vol. 114, no. 3, pp. 898–904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Ye, T. Wang, L. Tang et al., “Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein,” Journal of Pharmaceutical Sciences, vol. 100, no. 11, pp. 5007–5017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Gerhäuser, K. Klimo, E. Heiss et al., “Mechanism-based in vitro screening of potential cancer chemopreventive agents,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 523-524, pp. 163–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. H. L. Bradlow and M. A. Zeligs, “Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments,” In Vivo, vol. 24, no. 4, pp. 387–391, 2010. View at Google Scholar · View at Scopus
  93. E. Cavalieri, D. Chakravarti, J. Guttenplan et al., “Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention,” Biochimica et Biophysica Acta, vol. 1766, no. 1, pp. 63–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Mulvey, A. Chandrasekaran, K. Liu et al., “Interplay of genes regulated by estrogen and diindolylmethane in breast cancer cell lines,” Molecular Medicine, vol. 13, no. 1-2, pp. 69–78, 2007. View at Google Scholar
  95. H. R. Frydoonfar, D. R. McGrath, and A. D. Spigelman, “The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line,” ANZ Journal of Surgery, vol. 73, no. 3, pp. 154–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Stoner, B. Casto, S. Ralston, B. Roebuck, C. Pereira, and G. Bailey, “Development of a multi-organ rat model for evaluating chemopreventive agents: efficacy of indole-3-carbinol,” Carcinogenesis, vol. 23, no. 2, pp. 265–272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. T. G. Son, S. Camandola, and M. P. Mattson, “Hormetic dietary phytochemicals,” NeuroMolecular Medicine, vol. 10, no. 4, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Zakkar, K. Van der Heiden, L. A. Luong et al., “Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 11, pp. 1851–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Krishnamurthy, Y. Hu, S. Siedlak, Y. Q. Doughman, M. Watanabe, and M. M. Montano, “Induction of quinone reductase by tamoxifen or DPN protects against mammary tumorigenesis,” The FASEB Journal, vol. 26, no. 10, pp. 3993–4002, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. L. L. Stoll, M. L. McCormick, G. M. Denning, and N. L. Weintraub, “Antioxidant effects of statins,” Drugs of Today, vol. 40, no. 12, pp. 975–989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. N.-H. Kim, M.-K. Oh, H. J. Park, and I.-S. Kim, “Auranofin, a gold(I)-containing antirheumatic compound, activates Keap1/Nrf2 signaling via Rac1/iNOS signal and mitogen-activated protein kinase activation,” Journal of Pharmacological Sciences, vol. 113, no. 3, pp. 246–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Aburaya, K.-I. Tanaka, T. Hoshino et al., “Heme oxygenase-1 protects gastric mucosal cells against non-steroidal anti-inflammatory drugs,” The Journal of Biological Chemistry, vol. 281, no. 44, pp. 33422–33432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. P. E. Pergola, P. Raskin, R. D. Toto et al., “Bardoxolone methyl and kidney function in CKD with type 2 diabetes,” The New England Journal of Medicine, vol. 365, no. 4, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. M. B. Sporn, K. T. Liby, M. M. Yore, L. Fu, J. M. Lopchuk, and G. W. Gribble, “New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress,” Journal of Natural Products, vol. 74, no. 3, pp. 537–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Zoja, A. Benigni, and G. Remuzzi, “The Nrf2 pathway in the progression of renal disease,” Nephrology Dialysis Transplantation, vol. 29, supplement 1, pp. i19–i24, 2014. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Liu, “Oleanolic acid and ursolic acid: research perspectives,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 92–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. Q. Q. Wu, Y. Wang, M. Senitko et al., “Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1,” American Journal of Physiology—Renal Physiology, vol. 300, no. 5, pp. 1180–1192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. D. de Zeeuw, T. Akizawa, R. Agarwal et al., “Rationale and trial design of bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes: the occurrence of renal events (BEACON),” American Journal of Nephrology, vol. 37, no. 3, pp. 212–222, 2013. View at Publisher · View at Google Scholar · View at Scopus
  109. A. T. Dinkova-Kostova, K. T. Liby, K. K. Stephenson et al., “Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4584–4589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Ristow, K. Zarse, A. Oberbach et al., “Antioxidants prevent health-promoting effects of physical exercise in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8665–8670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. T.-T. Peternelj and J. S. Coombes, “Antioxidant supplementation during exercise training: beneficial or detrimental?” Sports Medicine, vol. 41, no. 12, pp. 1043–1069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. Q. Zhang, J. Pi, C. G. Woods, and M. E. Andersen, “A systems biology perspective on Nrf2-mediated antioxidant response,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 84–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. V. R. Muthusamy, S. Kannan, K. Sadhaasivam et al., “Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium,” Free Radical Biology and Medicine, vol. 52, no. 2, pp. 366–376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. M. J. M. Magbanua, E. L. Richman, E. V. Sosa et al., “Physical activity and prostate gene expression in men with low-risk prostate cancer,” Cancer Causes and Control, vol. 25, no. 4, pp. 515–523, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Wang, X. He, G. D. Szklarz, Y. Bi, Y. Rojanasakul, and Q. Ma, “The aryl hydrocarbon receptor interacts with nuclear factor erythroid 2-related factor 2 to mediate induction of NAD(P)H:quinoneoxidoreductase 1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Archives of Biochemistry and Biophysics, vol. 537, no. 1, pp. 31–38, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Singh, D. Chakravarti, J. A. Edney et al., “Relative imbalances in the expression of estrogen-metabolizing enzymes in the breast tissue of women with breast carcinoma,” Oncology Reports, vol. 14, no. 4, pp. 1091–1096, 2005. View at Google Scholar · View at Scopus
  117. D. Siegel, D. L. Gustafson, D. L. Dehn et al., “NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger,” Molecular Pharmacology, vol. 65, no. 5, pp. 1238–1247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. B. Lajin and A. Alachkar, “The NQO1 polymorphism C609T (Pro187Ser) and cancer susceptibility: a comprehensive meta-analysis,” British Journal of Cancer, vol. 109, no. 5, pp. 1325–1337, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Rubattu, S. Di Castro, M. Cotugno et al., “Protective effects of Brassica oleracea sprouts extract toward renal damage in high-salt-fed SHRSP: role of AMPK/PPARα/UCP2 axis,” Journal of Hypertension, vol. 33, no. 7, pp. 1465–1479, 2015. View at Publisher · View at Google Scholar
  120. H.-J. Cho, J.-E. Kim, D.-D. Kim, and I.-S. Yoon, “In vitro-in vivo extrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: principles and applications,” Drug Development and Industrial Pharmacy, vol. 40, no. 8, pp. 989–998, 2014. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Lennernäs, “Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans,” Current Drug Metabolism, vol. 8, no. 7, pp. 645–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Hu, “Commentary: bioavailability of flavonoids and polyphenols: call to arms,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 803–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. D'Archivio, C. Filesi, R. Varì, B. Scazzocchio, and R. Masella, “Bioavailability of the polyphenols: status and controversies,” International Journal of Molecular Sciences, vol. 11, no. 4, pp. 1321–1342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Hanlon, N. Coldham, A. Gielbert et al., “Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat,” British Journal of Nutrition, vol. 99, no. 3, pp. 559–564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. S. K. Nicholson, G. A. Tucker, and J. M. Brameld, “Effects of dietary polyphenols on gene expression in human vascular endothelial cells,” Proceedings of the Nutrition Society, vol. 67, no. 1, pp. 42–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  127. K.-Y. Yang, L.-C. Lin, T.-Y. Tseng, S.-C. Wang, and T.-H. Tsai, “Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 853, no. 1-2, pp. 183–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Walle, “Bioavailability of resveratrol,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Javed, K. Kohli, and M. Ali, “Reassessing bioavailability of silymarin,” Alternative Medicine Review, vol. 16, no. 3, pp. 239–249, 2011. View at Google Scholar · View at Scopus
  130. A. Scalbert, C. Manach, C. Morand, C. Rémésy, and L. Jiménez, “Dietary polyphenols and the prevention of diseases,” Critical Reviews in Food Science and Nutrition, vol. 45, no. 4, pp. 287–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. R. H. Liu, “Potential synergy of phytochemicals in cancer prevention: mechanism of action,” Journal of Nutrition, vol. 134, no. 12, supplement, pp. 3479S–3485S, 2004. View at Google Scholar · View at Scopus
  132. J. Kanner and T. Lapidot, “The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1388–1395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. A. J. Vargas and R. Burd, “Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management,” Nutrition Reviews, vol. 68, no. 7, pp. 418–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Galati, S. Teng, M. Y. Moridani, T. S. Chan, and P. J. O'Brien, “Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics,” Drug Metabolism and Drug Interactions, vol. 17, no. 1–4, pp. 311–349, 2000. View at Google Scholar · View at Scopus
  135. R. Ferraresi, L. Troiano, E. Roat et al., “Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin,” Free Radical Research, vol. 39, no. 11, pp. 1249–1258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. M. B. M. van Duursen, J. T. Sanderson, P. C. de Jong, M. Kraaij, and M. van den Berg, “Phytochemicals inhibit catechol-O-methyltransferase activity in cytosolic fractions from healthy human mammary tissues: implications for catechol estrogen-induced DNA damage,” Toxicological Sciences, vol. 81, no. 2, pp. 316–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. L. I. Mennen, R. Walker, C. Bennetau-Pelissero, and A. Scalbert, “Risks and safety of polyphenol consumption,” The American Journal of Clinical Nutrition, vol. 81, supplement 1, pp. 326S–329S, 2005. View at Google Scholar
  138. A. Shehzad, G. Rehman, and Y. S. Lee, “Curcumin in inflammatory diseases,” BioFactors, vol. 39, no. 1, pp. 69–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Buhrmann, A. Mobasheri, F. Busch et al., “Curcumin modulates nuclear factor κB (nf-κB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway,” Journal of Biological Chemistry, vol. 286, no. 32, pp. 28556–28566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. R. A. Sharma, S. A. Euden, S. L. Platton et al., “Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance,” Clinical Cancer Research, vol. 10, no. 20, pp. 6847–6854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. L. M. Howells, E. P. Moiseeva, C. P. Neal et al., “Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals,” Acta Pharmacologica Sinica, vol. 28, no. 9, pp. 1274–1304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. B. B. Aggarwal and K. B. Harikumar, “Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 40–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Sareen, N. Jain, and V. Pandit, “Curcumin: a boon to colonic diseases,” Current Drug Targets, vol. 14, no. 10, pp. 1210–1218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  144. S. K. Yadav, A. K. Sah, R. K. Jha, P. Sah, and D. K. Shah, “Turmeric (curcumin) remedies gastroprotective action,” Pharmacognosy Reviews, vol. 7, no. 13, pp. 42–46, 2013. View at Publisher · View at Google Scholar · View at Scopus
  145. G. Garcea, D. J. L. Jones, R. Singh et al., “Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration,” British Journal of Cancer, vol. 90, no. 5, pp. 1011–1015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. B. Antony, B. Merina, V. S. Iyer, N. Judy, K. Lennertz, and S. Joyal, “A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 4, pp. 445–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. C. D. Lao, M. T. Ruffin IV, D. Normolle et al., “Dose escalation of a curcuminoid formulation,” BMC Complementary and Alternative Medicine, vol. 6, article 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. K. J. Pearson, J. A. Baur, K. N. Lewis et al., “Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span,” Cell Metabolism, vol. 8, no. 2, pp. 157–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Morselli, M. C. Maiuri, M. Markaki et al., “Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy,” Cell Death and Disease, vol. 1, no. 1, article e10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. J. M. Smoliga, J. A. Baur, and H. A. Hausenblas, “Resveratrol and health—a comprehensive review of human clinical trials,” Molecular Nutrition and Food Research, vol. 55, no. 8, pp. 1129–1141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. B. Agarwal and J. A. Baur, “Resveratrol and life extension,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 138–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle, “High absorption but very low bioavailability of oral resveratrol in humans,” Drug Metabolism and Disposition, vol. 32, no. 12, pp. 1377–1382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. V. S. Chachay, G. A. Macdonald, J. H. Martin et al., “Resveratrol does not benefit patients with nonalcoholic fatty liver disease,” Clinical Gastroenterology and Hepatology, vol. 12, no. 12, pp. 2092–2103, 2014. View at Publisher · View at Google Scholar · View at Scopus
  155. O. Vang, N. Ahmad, C. A. Baile et al., “What is new for an old molecule? systematic review and recommendations on the use of resveratrol,” PLoS ONE, vol. 6, no. 6, Article ID e19881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. S. C. Pradhan and C. Girish, “Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine,” Indian Journal of Medical Research, vol. 124, no. 5, pp. 491–504, 2006. View at Google Scholar · View at Scopus
  157. L. Abenavoli, R. Capasso, N. Milic, and F. Capasso, “Milk thistle in liver diseases: past, present, future,” Phytotherapy Research, vol. 24, no. 10, pp. 1423–1432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. B. S. Cornblatt, L. Ye, A. T. Dinkova-Kostova et al., “Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast,” Carcinogenesis, vol. 28, no. 7, pp. 1485–1490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Ye, A. T. Dinkova-Kostova, K. L. Wade, Y. Zhang, T. A. Shapiro, and P. Talalay, “Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans,” Clinica Chimica Acta, vol. 316, no. 1-2, pp. 43–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. M. A. Riedl, A. Saxon, and D. Diaz-Sanchez, “Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway,” Clinical Immunology, vol. 130, no. 3, pp. 244–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. J. W. Fahey, S. L. Wehage, W. D. Holtzclaw et al., “Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora,” Cancer Prevention Research, vol. 5, no. 4, pp. 603–611, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. Z. Fuller, P. Louis, A. Mihajlovski, V. Rungapamestry, B. Ratcliffe, and A. J. Duncan, “Influence of cabbage processing methods and prebiotic manipulationof colonic microflora on glucosinolate breakdown in man,” British Journal of Nutrition, vol. 98, no. 2, pp. 364–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. T. W. Kensler, J.-G. Chen, P. A. Egner et al., “Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo Township, Qidong, People's Republic of China,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 11, part 1, pp. 2605–2613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. N. V. Matusheski, J. A. Juvik, and E. H. Jeffery, “Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli,” Phytochemistry, vol. 65, no. 9, pp. 1273–1281, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. D.-L. Cheng, K. Hashimoto, and Y. Uda, “In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products,” Food and Chemical Toxicology, vol. 42, no. 3, pp. 351–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. C. C. Conaway, S. M. Getahun, L. L. Liebes et al., “Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli,” Nutrition and Cancer, vol. 38, no. 2, pp. 168–178, 2000. View at Publisher · View at Google Scholar · View at Scopus
  167. J. D. Clarke, A. Hsu, K. Riedl et al., “Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design,” Pharmacological Research, vol. 64, no. 5, pp. 456–463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. C. A. Houghton, R. G. Fassett, and J. S. Coombes, “Sulforaphane: translational research from laboratory bench to clinic,” Nutrition Reviews, vol. 71, no. 11, pp. 709–726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  169. S. Qin, J. Chen, S. Tanigawa, and D.-X. Hou, “Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin,” Molecular Nutrition and Food Research, vol. 57, no. 3, pp. 435–446, 2013. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Motohashi, F. Katsuoka, J. D. Engel, and M. Yamamoto, “Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6379–6384, 2004. View at Publisher · View at Google Scholar · View at Scopus