Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 8473242, 9 pages
http://dx.doi.org/10.1155/2016/8473242
Research Article

Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

1Department of Molecular Biomedicine, CINVESTAV, Avenida IPN 2508, San Pedro Zacatenco, 07360 Mexico City, DF, Mexico
2Department of Infectomics and Molecular Pathogenesis, CINVESTAV, Avenida IPN 2508, San Pedro Zacatenco, 07360 Mexico City, DF, Mexico
3Department of Pharmacology, National Cardiology Institute “Ignacio Chávez”, 14080 Mexico City, DF, Mexico
4Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Avenida IPN 2508, San Pedro Zacatenco, 07360 Mexico City, DF, Mexico

Received 24 October 2015; Accepted 1 December 2015

Academic Editor: Noriko Noguchi

Copyright © 2016 Hilda Vargas Robles et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Neuman and R. M. Nanau, “Inflammatory bowel disease: role of diet, microbiota, life style,” Translational Research, vol. 160, no. 1, pp. 29–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. P. Colgan, V. F. Curtis, J. M. Lanis, and L. E. Glover, “Metabolic regulation of intestinal epithelial barrier during inflammation,” Tissue Barriers, vol. 3, no. 1-2, Article ID e970936, 2015. View at Publisher · View at Google Scholar
  4. M. Cöeffier, R. Marion-Letellier, and P. Déchelotte, “Potential for amino acids supplementation during inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 16, no. 3, pp. 518–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Shen, H. R. Gaskins, and M. K. McIntosh, “Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes,” Journal of Nutritional Biochemistry, vol. 25, no. 3, pp. 270–280, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Yamamoto, “Nutrition and diet in inflammatory bowel disease,” Current Opinion in Gastroenterology, vol. 29, no. 2, pp. 216–221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. C. E. G. M. Spooren, M. J. Pierik, M. P. Zeegers, E. J. M. Feskens, A. A. M. Masclee, and D. M. A. E. Jonkers, “Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease,” Alimentary Pharmacology & Therapeutics, vol. 38, no. 10, pp. 1172–1187, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Nanau and M. G. Neuman, “Nutritional and probiotic supplementation in colitis models,” Digestive Diseases and Sciences, vol. 57, no. 11, pp. 2786–2810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Coburn, X. Gong, K. Singh et al., “L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis,” PLoS ONE, vol. 7, no. 3, Article ID e33546, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Vermeiren, P. Hindryckx, G. Van Nieuwenhuyse et al., “Intrarectal nitric oxide administration prevents cellular infiltration but not colonic injury during dextran sodium sulfate colitis,” Digestive Diseases and Sciences, vol. 57, no. 7, pp. 1832–1837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Liu, M. Beaumont, F. Walker et al., “Beneficial effects of an amino acid mixture on colonic mucosal healing in rats,” Inflammatory Bowel Diseases, vol. 19, no. 13, pp. 2895–2905, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. A. Schepens, C. Vink, A. J. Schonewille et al., “Supplemental antioxidants do not ameliorate colitis development in HLA-B27 transgenic rats despite extremely low glutathione levels in colonic mucosa,” Inflammatory Bowel Diseases, vol. 17, no. 10, pp. 2065–2075, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Jiang, Z. Jiang, Y. J. Hall et al., “Gamma-tocopherol attenuates moderate but not severe colitis and suppresses moderate colitis-promoted colon tumorigenesis in mice,” Free Radical Biology & Medicine, vol. 65, pp. 1069–1077, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. A. F. Bento, R. F. Claudino, R. C. Dutra, R. Marcon, and J. B. Calixto, “Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice,” The Journal of Immunology, vol. 187, no. 4, pp. 1957–1969, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Varnalidis, O. Ioannidis, E. Karamanavi et al., “Omega 3 fatty acids supplementation has an ameliorative effect in experimental ulcerative colitis despite increased colonic neutrophil infiltration,” Revista española de enfermedades digestivas: organo oficial de la Sociedad Española de Patología Digestiva, vol. 103, no. 10, pp. 511–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Vargas-Robles, A. Rios, M. Arellano-Mendoza, B. A. Escalante, and M. Schnoor, “Antioxidative diet supplementation reverses high-fat diet-induced increases of cardiovascular risk factors in mice,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 467471, 9 pages, 2015. View at Publisher · View at Google Scholar
  17. R. Mennigen, K. Nolte, E. Rijcken et al., “Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 296, no. 5, pp. G1140–G1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. A. Dieleman, M. J. H. J. Palmen, H. Akol et al., “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 385–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Arellano-Mendoza, H. Vargas-Robles, L. Del Valle-Mondragon, A. Rios, and B. Escalante, “Prevention of renal injury and endothelial dysfunction by chronic L-arginine and antioxidant treatment,” Renal Failure, vol. 33, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. G. A. Mendoza, C. Castillo-Henkel, R. Medina-Santillan et al., “Kidney damage after renal ablation is worsened in endothelial nitric oxide synthase (−/−) mice and improved by combined administration of L-arginine and antioxidants,” Nephrology, vol. 13, no. 3, pp. 218–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Bruewer, M. Utech, A. I. Ivanov, A. M. Hopkins, C. A. Parkos, and A. Nusrat, “Interferon-γ induces internalization of epithelial tight junction proteins via a macropinocytosis-like process,” The FASEB Journal, vol. 19, no. 8, pp. 923–933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Yan, V. Kolachala, G. Dalmasso et al., “Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis,” PLoS ONE, vol. 4, no. 6, Article ID e6073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Hou, D. Lee, and J. Lewis, “Diet and inflammatory bowel disease: review of patient-targeted recommendations,” Clinical Gastroenterology and Hepatology, vol. 12, no. 10, pp. 1592–1600, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. G. D. Wu, F. D. Bushmanc, and J. D. Lewis, “Diet, the human gut microbiota, and IBD,” Anaerobe, vol. 24, pp. 117–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. A. I. Ivanov, “Structure and regulation of intestinal epithelial tight junctions: current concepts and unanswered questions,” Advances in Experimental Medicine and Biology, vol. 763, pp. 132–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Sumagin and C. A. Parkos, “Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration,” Tissue Barriers, vol. 3, no. 1-2, p. e969100, 2015. View at Publisher · View at Google Scholar
  27. J. R. Turner, “Intestinal mucosal barrier function in health and disease,” Nature Reviews Immunology, vol. 9, no. 11, pp. 799–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. I. Ivanov and N. G. Naydenov, “Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies,” International Review of Cell and Molecular Biology, vol. 303, pp. 27–99, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Hayashi, K. Narumi, S. Tsuji et al., “Impact of adrenomedullin on dextran sulfate sodium-induced inflammatory colitis in mice: insights from in vitro and in vivo experimental studies,” International Journal of Colorectal Disease, vol. 26, no. 11, pp. 1453–1462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Schmitz, C. Barmeyer, M. Fromm et al., “Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis,” Gastroenterology, vol. 116, no. 2, pp. 301–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Perše and A. Cerar, “Dextran sodium sulphate colitis mouse model: traps and tricks,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 718617, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Turner, P. S. Shah, A. H. Steinhart, S. Zlotkin, and A. M. Griffiths, “Maintenance of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): a systematic review and meta-analyses,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 336–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. K. Cross and K. T. Wilson, “Nitric oxide in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 9, no. 3, pp. 179–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Kolios, V. Valatas, and S. G. Ward, “Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle,” Immunology, vol. 113, no. 4, pp. 427–437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Armstrong, G. R. Campbell, C. Gannon, S. J. Kirk, and K. R. Gardiner, “Oral administration of inducible nitric oxide synthase inhibitors reduces nitric oxide synthesis but has no effect on the severity of experimental colitis,” Scandinavian Journal of Gastroenterology, vol. 35, no. 8, pp. 832–838, 2000. View at Google Scholar · View at Scopus
  36. J. Mañé, F. Fernández-Bañares, I. Ojanguren et al., “Effect of L-arginine on the course of experimental colitis,” Clinical Nutrition, vol. 20, no. 5, pp. 415–422, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Sobko, C. I. Reinders, E. Å. Jansson, E. Norin, T. Midtvedt, and J. O. Lundberg, “Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite,” Nitric Oxide, vol. 13, no. 4, pp. 272–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Piechota-Polanczyk and J. Fichna, “Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 387, no. 7, pp. 605–620, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Wallert, L. Schmölz, F. Galli, M. Birringer, and S. Lorkowski, “Regulatory metabolites of vitamin E and their putative relevance for atherogenesis,” Redox Biology, vol. 2, no. 1, pp. 495–503, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. R. González, F. Sánchez de Medina, J. Gálvez, M. E. Rodríguez-Cabezas, J. Duarte, and A. Zarzuelo, “Dietary vitamin E supplementation protects the rat large intestine from experimental inflammation,” International Journal for Vitamin and Nutrition Research, vol. 71, no. 4, pp. 243–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Ademoglu, Y. Erbil, B. Tam et al., “Do vitamin E and selenium have beneficial effects on trinitrobenzenesulfonic acid-induced experimental colitis,” Digestive Diseases and Sciences, vol. 49, no. 1, pp. 102–108, 2004. View at Publisher · View at Google Scholar · View at Scopus