Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 9251064, 10 pages
http://dx.doi.org/10.1155/2016/9251064
Research Article

Morphological and Biochemical Effects on the Skeletal Muscle of Ovariectomized Old Female Rats Submitted to the Intake of Diets with Vegetable or Animal Protein and Resistance Training

1Laboratory of Morphological and Immunohistochemical Studies, Universidade São Judas Tadeu, Brazil
2Postgraduate Program (Stricto Sensu), Ph.D. Course in Physical Education, Universidade São Judas Tadeu, Brazil
3Biological Sciences Department, Federal University of São Paulo, Diadema, SP, Brazil
4Laboratory of Clinical Analysis, ABC Medical School, Santo André, SP, Brazil

Received 12 October 2015; Revised 5 December 2015; Accepted 7 December 2015

Academic Editor: Valentina Pallottini

Copyright © 2016 Glaucia Figueiredo Braggion et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. OMS, 2010, http://www.who.int/ageing/publications/global_health.pdf.
  2. S. M. M. Matsudo, Envelhecimento e Atividade Física, Midiograf, Londrina, Brazil, 1st edition, 2001.
  3. D. Paddon-Jones and B. B. Rasmussen, “Dietary protein recommendations and the prevention of sarcopenia,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 1, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. N. Baumgartner, K. M. Koehler, D. Gallagher et al., “Epidemiology of sarcopenia among the elderly in New Mexico,” American Journal of Epidemiology, vol. 147, pp. 755–763, 1998. View at Google Scholar
  5. I. Janssen, S. B. Heymsfield, and R. Ross, “Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability,” Journal of the American Geriatrics Society, vol. 50, no. 5, pp. 889–896, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. W. Hamrick, K.-H. Ding, C. Pennington et al., “Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin,” Bone, vol. 39, no. 4, pp. 845–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Zuliani, F. Romagnoni, S. Volpato et al., “Nutritional parameters, body composition, and progression of disability in older disabled residents living in nursing homes,” Journals of Gerontology A Biological Sciences and Medical Sciences, vol. 56, no. 4, pp. M212–M216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Cuthbertson, K. Smith, J. Babraj et al., “Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle,” The FASEB Journal, vol. 19, no. 3, pp. 422–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Fujita, H. C. Dreyer, M. J. Drummond et al., “Nutrient signalling in the regulation of human muscle protein synthesis,” Journal of Physiology, vol. 582, no. 2, pp. 813–823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Fujita, B. B. Rasmussen, J. G. Cadenas et al., “Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling,” Diabetes, vol. 56, no. 6, pp. 1615–1622, 2007. View at Publisher · View at Google Scholar
  11. W. W. Campbell, “Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia,” Nutrition Reviews, vol. 65, no. 9, pp. 416–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Marzetti, J. C. Y. Hwang, H. A. Lees et al., “Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 235–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dirks and C. Leeuwenburgh, “Apoptosis in skeletal muscle with aging,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 282, no. 2, pp. R519–R527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer et al., “Sarcopenia: European consensus on definition and diagnosis,” Age and Ageing, vol. 39, no. 4, Article ID afq034, pp. 412–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Maltais, J. Desroches, and I. J. Dionne, “Changes in muscle mass and strength after menopause,” Journal of Musculoskeletal Neuronal Interactions, vol. 9, no. 4, pp. 186–197, 2009. View at Google Scholar · View at Scopus
  16. R. R. Wolfe, “Regulation of muscle protein by amino acids,” Journal of Nutrition, vol. 132, no. 10, pp. 3219S–3224S, 2002. View at Google Scholar
  17. A. A. Ferrando, D. Paddon-Jones, N. P. Hays et al., “EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly,” Clinical Nutrition, vol. 29, no. 1, pp. 18–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Guillet, M. Prod'homme, M. Balage et al., “Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans,” The FASEB Journal, vol. 18, no. 13, pp. 1586–1587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Volpi, B. Mittendorfer, B. B. Rasmussen, and R. R. Wolfe, “The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4481–4490, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Catalano, R. N. Bergman, and M. Ader, “Increased susceptibility to insulin resistance associated with abdominal obesity in aging rats,” Obesity Research, vol. 13, no. 1, pp. 11–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Chevalier, E. B. Marliss, J. A. Morais, M. Lamarche, and R. Gougeon, “Whole-body protein anabolic response is resistant to the action of insulin in obese women,” The American Journal of Clinical Nutrition, vol. 82, no. 2, pp. 355–365, 2005. View at Google Scholar · View at Scopus
  22. M. Visser, B. H. Goodpaster, S. B. Kritchevsky et al., “Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 60, no. 3, pp. 324–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T.-M. Asikainen, K. Kukkonen-Harjula, and S. Miilunpalo, “Exercise for health for early postmenopausal women: a systematic review of randomised controlled trials,” Sports Medicine, vol. 34, no. 11, pp. 753–778, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Lee, E. R. Barton, H. L. Sweeney, and R. P. Farrar, “Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats,” Journal of Applied Physiology, vol. 96, no. 3, pp. 1097–1104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. L. C. U. Junqueira, G. Bignolas, and R. R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” The Histochemical Journal, vol. 11, no. 4, pp. 447–455, 1979. View at Publisher · View at Google Scholar · View at Scopus
  26. AxioVision Imaging System. 3,8 Version, Carl Zeiss by Imaging Associates, Jena, Germany, 2011, http://urlm.co.uk/www.imas.co.uk.
  27. C. A. Mandarim-de-Lacerda, “Stereological tools in biomedical research,” Anais da Academia Brasileira de Ciencias, vol. 75, no. 4, pp. 469–486, 2003. View at Publisher · View at Google Scholar
  28. M. H. Brooke and K. K. Kaiser, “Muscle fiber types: how many and what kind?” Archives of Neurology, vol. 23, no. 4, pp. 369–379, 1970. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. Bárnard, V. R. Edgerton, T. Furukawa, and J. B. Peter, “Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers,” American Journal of Physiology, vol. 220, no. 2, pp. 410–414, 1971. View at Google Scholar · View at Scopus
  30. W. P. Mayer, Características estruturais, ultra-estruturais e morfoquantitativas dos músculos tibial anterior e sóleo de ratos jovens submetidos à imobilização da articulação talocrural [Dissertação (Mestrado em Ciências Morfofuncionais)], Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil, 2008.
  31. F. De Oliveira, Características histoquímica das fibras do músculo gastrocnêmio medial de ratos wistar desnutridos submetidos à lesão térmica corporal [Tese (Doutorado em Ciências Morfofuncionais)], Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil, 2006.
  32. E. M. Molinaro, Conceitos e Métodos Para a Formação de Profissionais em Laboratórios de Saúde: Volume 2 / Organização de Etelcia Moraes Molinaro, Luzia Fátima Gonçalves Caputo e Maria Regina Reis Amendoeira, EPSJV, IOC, Rio de Janeiro, Brazil, 2010.
  33. E. B. Lushaj, J. K. Johnson, D. McKenzie, and J. M. Aiken, “Sarcopenia accelerates at advanced ages in Fisher 344×brown Norway rats,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 63, no. 9, pp. 921–927, 2008. View at Publisher · View at Google Scholar
  34. S. Carosio, M. G. Berardinelli, M. Aucello, and A. Musarò, “Impact of ageing on muscle cell regeneration,” Ageing Research Reviews, vol. 10, no. 1, pp. 35–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-S. Kim, Y.-M. Park, S.-R. Lee et al., “β-Hydroxy-β-methylbutyrate did not enhance high intensity resistance training-induced improvements in myofiber dimensions and myogenic capacity in aged female rats,” Molecules and Cells, vol. 34, no. 5, pp. 439–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. Hartman, J. E. Tang, S. B. Wilkinson et al., “Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters,” The American Journal of Clinical Nutrition, vol. 86, no. 2, pp. 373–381, 2007. View at Google Scholar · View at Scopus
  37. J. E. Tang, D. R. Moore, G. W. Kujbida, M. A. Tarnopolsky, and S. M. Phillips, “Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men,” Journal of Applied Physiology, vol. 107, no. 3, pp. 987–992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. S. Westerterp-Plantenga, A. Nieuwenhuizen, D. Tomé, S. Soenen, and K. R. Westerterp, “Dietary protein, weight loss, and weight maintenance,” Annual Review of Nutrition, vol. 29, no. 1, pp. 21–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Graf, S. Egert, and M. Heer, “Effects of whey protein supplements on metabolism: evidence from human intervention studies,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 6, pp. 569–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Chalé, G. J. Cloutier, C. Hau, E. M. Phillips, G. E. Dallal, and R. A. Fielding, “Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults,” Journals of Gerontology A Biological Sciences and Medical Sciences, vol. 68, no. 6, pp. 682–690, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. American Dietetic Association (ADA), “Position of the American Dietetic Association and dietitians of Canada: vegetarian diets,” Journal of the American Dietetic Association, vol. 103, no. 6, pp. 748–765, 2003. View at Publisher · View at Google Scholar
  42. H. A. DeVries, “Physiological effects of an exercise training regimen upon men aged 52 to 88,” Journals of Gerontology, vol. 25, no. 4, pp. 325–336, 1970. View at Google Scholar · View at Scopus
  43. T. K. Borg and J. B. Caulfield, “Morphology of connective tissue in skeletal muscle,” Tissue and Cell, vol. 12, no. 1, pp. 197–207, 1980. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Moreira, M. V. H. Brito, N. M. B. Brito, and M. S. L. Freire Filho, “Estudo histomorfométrico do músculo esquelético de ratos em anestro,” Acta Cirúrgica Brasileira, vol. 20, no. 4, pp. 329–334, 2005. View at Google Scholar
  45. L. Barberi, B. M. Scicchitano, M. De Rossi et al., “Age-dependent alteration in muscle regeneration: the critical role of tissue niche,” Biogerontology, vol. 14, no. 3, pp. 273–292, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. R. D. Lipman, C. E. Chrisp, D. G. Hazzard, and R. T. Bronson, “Pathologic characterization of brown Norway, brown Norway x Fischer 344, and Fischer 344 x brown Norway rats with relation to age,” Journals of Gerontology A Biological Sciences and Medical Sciences, vol. 51, no. 1, pp. B54–B59, 1996. View at Google Scholar · View at Scopus
  47. W. V. Arnold and A. Fertala, “Skeletal diseases caused by mutations that affect collagen structure and function,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 8, pp. 1556–1567, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Børsheim, Q.-U. T. Bui, S. Tissier, H. Kobayashi, A. A. Ferrando, and R. R. Wolfe, “Effect of amino acid supplementation on muscle mass, strength and physical function in elderly,” Clinical Nutrition, vol. 27, no. 2, pp. 189–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Faulkner, L. M. Larkin, D. R. Claflin, and S. V. Brooks, “Age-related changes in skeletal muscles,” Proceedings of the Australian Physiological Society, vol. 38, pp. 69–75, 2007. View at Google Scholar
  50. S. V. Brooks and J. A. Faulkner, “Contractile properties of skeletal muscles from young, adult and aged mice,” Journal of Physiology, vol. 404, pp. 71–82, 1988. View at Publisher · View at Google Scholar · View at Scopus
  51. S. V. Brooks and J. A. Faulkner, “Forces and powers of slow and fast skeletal muscles in mice during repeated contractions,” Journal of Physiology, vol. 436, pp. 701–710, 1991. View at Publisher · View at Google Scholar · View at Scopus