Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1092015, 13 pages
https://doi.org/10.1155/2017/1092015
Research Article

Simvastatin Ameliorates Diabetic Cardiomyopathy by Attenuating Oxidative Stress and Inflammation in Rats

1Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
2Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
3Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
4Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
5Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Berlin, Germany
6Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany

Correspondence should be addressed to Ayman M. Mahmoud; ge.ude.usb.ecneics@duomham.namya

Received 19 June 2017; Accepted 6 August 2017; Published 12 September 2017

Academic Editor: Simona G. Bungǎu

Copyright © 2017 Nawal M. Al-Rasheed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Bertoni, W. G. Hundley, M. W. Massing, D. E. Bonds, G. L. Burke, and D. C. Goff Jr, “Heart failure prevalence, incidence, and mortality in the elderly with diabetes,” Diabetes Care, vol. 27, no. 3, p. 699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Boudina and E. D. Abel, “Diabetic cardiomyopathy revisited,” Circulation, vol. 115, no. 25, pp. 3213–3223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Lorenzo-Almoros, J. Tunon, M. Orejas, M. Cortés, J. Egido, and Ó. Lorenzo, “Diagnostic approaches for diabetic cardiomyopathy,” Cardiovascular Diabetology, vol. 16, no. 1, p. 28, 2017. View at Google Scholar
  4. Y. Saisho, “Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease?” International Journal of Molecular Sciences, vol. 15, no. 10, pp. 18381–18406, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Khanra, S. Dewanjee, T. K Dua et al., “Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response,” Journal of Translational Medicine, vol. 13, p. 6, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Bhattacharjee, S. Barma, N. Konwar, S. Dewanjee, and P. Manna, “Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update,” European Journal of Pharmacology, vol. 791, pp. 8–24, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. H. O. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. D. Baron, “Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production,” Diabetes, vol. 49, no. 7, pp. 1231–1238, 2000. View at Google Scholar
  8. M. S. Shah and M. Brownlee, “Molecular and cellular mechanisms of cardiovascular disorders in diabetes,” Circulation Research, vol. 118, no. 11, pp. 1808–1829, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. N. K. Kapur and K. Musunuru, “Clinical efficacy and safety of statins in managing cardiovascular risk,” Vascular Health and Risk Management, vol. 4, no. 2, pp. 341–353, 2008. View at Publisher · View at Google Scholar
  10. C. W. Liu, F. Yang, S. Z. Cheng, Y. Liu, L. H. Wan, and H. L. Cong, “Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: the role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore,” Cardiovascular Therapeutics, vol. 35, no. 1, pp. 3–9, 2017. View at Publisher · View at Google Scholar
  11. K. Iwakura, H. Ito, S. Kawano et al., “Chronic pre-treatment of statins is associated with the reduction of the no-reflow phenomenon in the patients with reperfused acute myocardial infarction,” European Heart Journal, vol. 27, no. 5, pp. 534–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Zhao, Y. J. Yang, C. J. Cui, S. J. You, and R. L. Gao, “Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial KATP channel,” British Journal of Pharmacology, vol. 149, no. 3, pp. 243–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Manickavasagam, Y. Ye, Y. Lin et al., “The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation,” Cardiovascular Drugs and Therapy, vol. 21, no. 5, pp. 321–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Mohamadin, A. A. Elberry, H. S. Abdel Gawad, G. M. Morsy, and F. A. Al-Abbasi, “Protective effects of simvastatin, a lipid lowering agent, against oxidative damage in experimental diabetic rats,” Journal of Lipids, vol. 2011, Article ID 167958, 13 pages, 2011. View at Publisher · View at Google Scholar
  15. N. M. Al-Rasheed, M. M. Al-Oteibi, R. Z. Al-Manee et al., “Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway,” Drug Design, Development and Therapy, vol. 9, pp. 3217–3229, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Luo, F. Xie, W. W. Zhang, X. D. Ma, J. X. Guan, and X. Chen, “Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes,” British Journal of Pharmacology, vol. 132, no. 1, pp. 159–164, 2001. View at Publisher · View at Google Scholar
  17. L. Wu, L. Zhao, Q. Zheng et al., “Simvastatin attenuates hypertrophic responses induced by cardiotrophin-1 via JAK-STAT pathway in cultured cardiomyocytes,” Molecular and Cellular Biochemistry, vol. 284, no. 1-2, pp. 65–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Liu, Q. Shen, and Y. Wu, “Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway,” Life Sciences, vol. 82, no. 19-20, pp. 991–996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Gonzalez-Herrera, A. Cramer, P. Pimentel et al., “Simvastatin attenuates endothelial activation through 15-epi-lipoxin A4 production in murine chronic Chagas cardiomyopathy,” Antimicrobial Agents and Chemotherapy, vol. 61, no. 3, 2017. View at Publisher · View at Google Scholar
  20. C. C. Allain, L. S. Poon, C. S. Chan, W. Richmond, and P. C. Fu, “Enzymatic determination of total serum cholesterol,” Clinical Chemistry, vol. 20, no. 4, pp. 470–475, 1974. View at Google Scholar
  21. P. Fossati and L. Prencipe, “Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide,” Clinical Chemistry, vol. 28, no. 10, pp. 2077–2080, 1982. View at Google Scholar
  22. M. Burstein, H. R. Scholnick, and R. Morfin, “Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions,” Journal of Lipid Research, vol. 11, no. 6, pp. 583–595, 1970. View at Google Scholar
  23. R. Ross, “The pathogenesis of atherosclerosis,” in Heart Disease: A Textbook of Cardiovascular Medicine, E. Braunwald, Ed., pp. 1106–1124, WB Saunders, Philadelphia, PA, 1992. View at Google Scholar
  24. H. G. Preuss, S. T. Jarrell, R. Scheckenbach, S. Lieberman, and R. A. Anderson, “Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR,” Journal of the American College of Nutrition, vol. 17, no. 2, pp. 116–123, 1998. View at Publisher · View at Google Scholar
  25. E. Beutler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963. View at Google Scholar
  26. S. Marklund and G. Marklund, “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase,” European Journal of Biochemistry, vol. 47, no. 3, pp. 469–474, 1974. View at Publisher · View at Google Scholar · View at Scopus
  27. M. B. Grisham, G. G. Johnson, and J. R. Lancaster Jr., “Quantitation of nitrate and nitrite in extracellular fluids,” Methods in Enzymology, vol. 268, pp. 237–246, 1996. View at Publisher · View at Google Scholar
  28. A. M. Mahmoud, M. O. Germoush, M. F. Alotaibi, and O. E. Hussein, “Possible involvement of Nrf2 and PPARγ up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity,” Biomedicine & Pharmacotherapy, vol. 86, pp. 297–306, 2017. View at Publisher · View at Google Scholar
  29. K. Huynh, B. C. Bernardo, J. R. McMullen, and R. H. Ritchie, “Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways,” Pharmacology & Therapeutics, vol. 142, no. 3, pp. 375–415, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Falcao-Pires and A. F. Leite-Moreira, “Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment,” Heart Failure Reviews, vol. 17, no. 3, pp. 325–344, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Suzuki, Y. Kayama, M. Sakamoto et al., “Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy,” Diabetes, vol. 64, no. 2, pp. 618–630, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. Al-Rasheed, N. M. Al-Rasheed, I. H. Hasan, M. A. Al-Amin, H. N. Al-Ajmi, and A. M. Mahmoud, “Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats,” Drug Design, Development and Therapy, vol. 10, pp. 2095–2107, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Zhang, H. Xu, X. Yu, Y. Wang, F. Sun, and D. Sui, “Simvastatin ameliorates low-dose streptozotocin-induced type 2 diabetic nephropathy in an experimental rat model,” International Journal of Clinical and Experimental Medicine, vol. 8, no. 4, pp. 6388–6396, 2015. View at Google Scholar
  34. S. I. McFarlane, R. Muniyappa, R. Francisco, and J. R. Sowers, “Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1451–1458, 2002. View at Publisher · View at Google Scholar
  35. K. K. Ray and C. P. Cannon, “The potential relevance of the multiple lipid-independent (pleiotropic) effects of statins in the management of acute coronary syndromes,” Journal of the American College of Cardiology, vol. 46, no. 8, pp. 1425–1433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Taldone, S. W. Zito, and T. T. Talele, “Inhibition of dipeptidyl peptidase-IV (DPP-IV) by atorvastatin,” Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 2, pp. 479–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Frati, L. Schirone, I. Chimenti et al., “An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy,” Cardiovascular Research, vol. 113, no. 4, pp. 378–388, 2017. View at Publisher · View at Google Scholar
  38. T. Yokoyama, M. Nakano, J. L. Bednarczyk, B. W. McIntyre, M. Entman, and D. L. Mann, “Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes,” Circulation, vol. 95, no. 5, pp. 1247–1252, 1997. View at Google Scholar
  39. G. Condorelli, C. Morisco, M. V. Latronico et al., “TNF-α signal transduction in rat neonatal cardiac myocytes: definition of pathways generating from the TNF-α receptor,” The FASEB Journal, vol. 16, no. 13, pp. 1732–1737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. G.-G. Wang, W. Li, X.-H. Lu, X. Zhao, and L. Xu, “Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats,” Croatian Medical Journal, vol. 54, no. 2, pp. 171–179, 2013. View at Google Scholar
  42. P. B. Taylor and Q. Tang, “Development of isoproterenol-induced cardiac hypertrophy,” Canadian Journal of Physiology and Pharmacology, vol. 62, no. 4, pp. 384–389, 1984. View at Google Scholar
  43. A. Upaganlawar and R. Balaraman, “Protective effects of Lagenaria siceraria (Molina) fruit juice in isoproterenol induced myocardial infarction,” International Journal of Pharmacology, vol. 6, no. 5, pp. 645–651, 2010. View at Google Scholar
  44. S. Boudina and E. D. Abel, “Diabetic cardiomyopathy, causes and effects,” Reviews in Endocrine & Metabolic Disorders, vol. 11, no. 1, pp. 31–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Inoguchi, P. Li, F. Umeda et al., “High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells,” Diabetes, vol. 49, no. 11, pp. 1939–1945, 2000. View at Publisher · View at Google Scholar
  46. A. C. Leite, T. G. Araujo, B. M. Carvalho, N. H. Silva, V. L. Lima, and M. B. Maia, “Parkinsonia aculeata aqueous extract fraction: biochemical studies in alloxan-induced diabetic rats,” Journal of Ethnopharmacology, vol. 111, no. 3, pp. 547–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Keul, K. Sattler, and B. Levkau, “HDL and its sphingosine-1-phosphate content in cardioprotection,” Heart Failure Reviews, vol. 12, no. 3-4, pp. 301–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Hemmati, E. Zohoori, O. Mehrpour et al., “Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions,” EXCLI Journal, vol. 14, pp. 908–915, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Boudina, S. Sena, B. T. O'Neill, P. Tathireddy, M. E. Young, and E. D. Abel, “Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity,” Circulation, vol. 112, no. 17, pp. 2686–2695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Silambarasan and B. Raja, “Diosmin, a bioflavonoid reverses alterations in blood pressure, nitric oxide, lipid peroxides and antioxidant status in DOCA-salt induced hypertensive rats,” European Journal of Pharmacology, vol. 679, no. 1–3, pp. 81–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. S. E. McKim, E. Gäbele, F. Isayama et al., “Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice,” Gastroenterology, vol. 125, no. 6, pp. 1834–1844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Mahmoud, M. B. Ashour, A. Abdel-Moneim, and O. M. Ahmed, “Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats,” Journal of Diabetes and its Complications Journal of Diabetes and its Complications, vol. 26, no. 6, pp. 483–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. M. Mahmoud and H. S. A. Dera, “18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation,” Genes & Nutrition, vol. 10, no. 6, pp. 1–13, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Seddon, Y. H. Looi, and A. M. Shah, “Oxidative stress and redox signalling in cardiac hypertrophy and heart failure,” Heart, vol. 93, no. 8, pp. 903–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. R. A. Frieler and R. M. Mortensen, “Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling,” Circulation, vol. 131, no. 11, pp. 1019–1030, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. D. L. Mann, “Innate immunity and the failing heart: the cytokine hypothesis revisited,” Circulation Research, vol. 116, no. 7, pp. 1254–1268, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. S. D. Prabhu and N. G. Frangogiannis, “The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis,” Circulation Research, vol. 119, no. 1, pp. 91–112, 2016. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Bozkurt, S. B. Kribbs, F. J. Clubb Jr et al., “Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats,” Circulation, vol. 97, no. 14, pp. 1382–1391, 1998. View at Publisher · View at Google Scholar
  59. T. Kubota, C. F. McTiernan, C. S. Frye et al., “Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α,” Circulation Research, vol. 81, no. 4, pp. 627–635, 1997. View at Publisher · View at Google Scholar
  60. M. Sun, M. Chen, F. Dawood et al., “Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state,” Circulation, vol. 115, no. 11, pp. 1398–1407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Westermann, S. V. Linthout, S. Dhayat et al., “Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy,” Basic Research in Cardiology, vol. 102, no. 6, pp. 500–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. K. Rutter, J. B. Meigs, L. M. Sullivan, R. B. D'Agostino Sr., and P. W. Wilson, “C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham offspring study,” Circulation, vol. 110, no. 4, pp. 380–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. S. K. Gupta, S. Dongare, R. Mathur et al., “Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats,” Molecular and Cellular Biochemistry, vol. 408, no. 1-2, pp. 63–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Tan, T. Ichikawa, J. Li et al., “Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo,” Diabetes, vol. 60, no. 2, pp. 625–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. H. C. Volz, C. Seidel, D. Laohachewin et al., “HMGB1: the missing link between diabetes mellitus and heart failure,” Basic Research in Cardiology, vol. 105, no. 6, pp. 805–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Kim, M. Pham, I. Luttrell et al., “Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity,” Circulation Research, vol. 100, no. 11, pp. 1589–1596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. B. Haudek, G. E. Taffet, M. D. Schneider, and D. L. Mann, “TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2692–2701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. R. G. Baker, M. S. Hayden, and S. Ghosh, “NF-kappaB, inflammation, and metabolic disease,” Cell Metabolism, vol. 13, no. 1, pp. 11–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Venkatachalam, B. Venkatesan, A. J. Valente et al., “WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-α (TNF-α)-stimulated cardiac fibroblast proliferation but inhibits TNF-α-induced cardiomyocyte death,” The Journal of Biological Chemistry, vol. 284, no. 21, pp. 14414–14427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. H. Chen, B. Feng, and Z. W. Chen, “Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis,” Experimental and Clinical Endocrinology & Diabetes, vol. 120, no. 2, pp. 116–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. S. V. Linthout, A. Riad, N. Dhayat et al., “Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy,” Diabetologia, vol. 50, no. 9, pp. 1977–1986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. Q. M. Dai, J. Lu, and N. F. Liu, “Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor,” Chinese Medical Journal, vol. 124, no. 1, pp. 89–94, 2011. View at Google Scholar