Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1832093, 17 pages
Research Article

YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission

Department of Complex Prescription of TCM, State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China

Correspondence should be addressed to Boyang Yu; moc.361@95uygnayob and Junping Kou; nc.ude.upc@uokgnipnuj

Received 3 June 2017; Revised 21 August 2017; Accepted 30 October 2017; Published 24 December 2017

Academic Editor: M. Dolores Martín-de-Saavedra

Copyright © 2017 Yingqiong Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitochondrial apoptosis and activation of dynamin-related protein 1 (Drp1) in cerebral ischemia-injured rats, producing a significant improvement in cerebral infarction and neurological score. YQFM also attenuated oxidative stress-induced mitochondrial dysfunction and apoptosis through increasing ATP level and mitochondria membrane potential (Δψm), inhibiting ROS production, and regulating Bcl-2 family protein levels in primary cultured neurons. Moreover, YQFM inhibited excessive mitochondrial fission, Drp1 phosphorylation, and translocation from cytoplasm to mitochondria induced by oxidative stress. We provided the first evidence that YQFM inhibited the activation, association, and translocation of PKCδ and Drp1 upon oxidative stress. Taken together, we demonstrate that YQFM ameliorates ischemic stroke-induced neuronal apoptosis through inhibiting mitochondrial dysfunction and PKCδ/Drp1-mediated excessive mitochondrial fission. These findings not only put new insights into the unique neuroprotective properties of YQFM associated with the regulation of mitochondrial function but also expand our understanding of the underlying mechanisms of ischemic stroke.