Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 2012798, 13 pages
https://doi.org/10.1155/2017/2012798
Review Article

Mitochondrial Function and Mitophagy in the Elderly: Effects of Exercise

1Institute of Biomedicine (IBIOMED), University of León, León, Spain
2Institute of Biological Sciences and Health, Federal University of Viçosa-Campus Florestal, Florestal, MG, Brazil

Correspondence should be addressed to María J. Cuevas; se.noelinu@geucjm and Javier González-Gallego; se.noelinu@agnogj

Received 16 March 2017; Revised 4 June 2017; Accepted 6 July 2017; Published 16 August 2017

Academic Editor: Orlando Laitano

Copyright © 2017 Osvaldo C. Moreira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “The hallmarks of aging,” Cell, vol. 153, no. 6, pp. 1194–1217, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Mejías-Peña, B. Estébanez, P. Rodriguez-Miguelez et al., “Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects,” Aging (Albany, New York), vol. 9, no. 2, pp. 408–418, 2017. View at Publisher · View at Google Scholar
  3. A. Schiavi and N. Ventura, “The interplay between mitochondria and autophagy and its role in the aging process,” Experimental Gerontology, vol. 56, pp. 147–153, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Cuervo and F. Macian, “Autophagy and the immune function in aging,” Current Opinion in Immunology, vol. 29, pp. 97–104, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Palikaras and N. Tavernarakis, “Mitophagy in neurodegeneration and aging,” Frontiers in Genetics, vol. 3, p. 297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. Payne and P. F. Chinnery, “Mitochondrial dysfunction in aging: much progress but many unresolved questions,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1847, no. 11, pp. 1347–1353, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Parihar and G. J. Brewer, “Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons,” Journal of Neuroscience Research, vol. 85, no. 5, pp. 1018–1032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Elmore, T. Qian, S. F. Grissom, and J. J. Lemasters, “The mitochondrial permeability transition initiates autophagy in rat hepatocytes,” FASEB Journal, vol. 15, no. 12, pp. 2286-2287, 2001. View at Publisher · View at Google Scholar
  9. K. Palikaras, E. Lionaki, and N. Tavernarakis, “Coupling mitogenesis and mitophagy for longevity,” Autophagy, vol. 11, no. 8, pp. 1428–1430, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Mejías-Peña, P. Rodriguez-Miguelez, R. Fernandez-Gonzalo et al., “Effects of aerobic training on markers of autophagy in the elderly,” Age (Dordrecht, Netherlands), vol. 38, no. 2, p. 33, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. G. López-Lluch, C. Santos-Ocaña, J. A. Sánchez-Alcázar et al., “Mitochondrial responsibility in ageing process: innocent, suspect or guilty,” Biogerontology, vol. 16, no. 5, pp. 599–620, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Sanz, “Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan?” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1857, no. 8, pp. 1116–1126, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Novak, “Mitophagy: a complex mechanism of mitochondrial removal,” Antioxidants & Redox Signaling, vol. 17, no. 5, pp. 794–802, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. N. Carter, C. C. Chen, and D. A. Hood, “Mitochondria, muscle health, and exercise with advancing age,” Physiology, vol. 30, no. 3, pp. 208–223, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Palikaras and N. Tavernarakis, “Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis,” Experimental Gerontology, vol. 56, pp. 182–188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Gouspillou, N. Sgarioto, B. Norris et al., “The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans,” PLoS One, vol. 9, no. 8, article e103044, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Mishra and D. C. Chan, “Metabolic regulation of mitochondrial dynamics,” The Journal of Cell Biology, vol. 212, no. 4, pp. 379–387, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Hamacher-Brady and N. R. Brady, “Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy,” Cellular and Molecular Life Sciences, vol. 73, no. 4, pp. 775–795, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. T. E. Kauppila, J. H. Kauppila, and N. G. Larsson, “Mammalian mitochondria and aging: an update,” Cell Metabolism, vol. 25, no. 1, pp. 57–71, 2017. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Schrepfer and L. Scorrano, “Mitofusins, from mitochondria to metabolism,” Molecular Cell, vol. 61, no. 5, pp. 683–694, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Hekimi, Y. Wang, and A. Noë, “Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in aging cells: the discerning killers!,” Frontiers in Genetics, vol. 7, p. 161, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Poulose and R. Raju, “Sirtuin regulation in aging and injury,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1852, no. 11, pp. 2442–2455, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. M. B. Jensen and H. Jasper, “Mitochondrial proteostasis in the control of aging and longevity,” Cell Metabolism, vol. 20, no. 2, pp. 214–225, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Nargund, C. J. Fiorese, M. W. Pellegrino, P. Deng, and C. M. Haynes, “Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt,” Molecular Cell, vol. 58, no. 1, pp. 123–133, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Tian, C. Merkwirth, and A. Dillin, “Mitochondrial UPR: a double-edged sword,” Trends in Cell Biology, vol. 26, no. 8, pp. 563–565, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. M. W. Pellegrino, A. M. Nargund, and C. M. Haynes, “Signaling the mitochondrial unfolded protein response,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1833, no. 2, pp. 410–416, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. K. E. Conley, S. A. Jubrias, and P. C. Esselman, “Oxidative capacity and ageing in human muscle,” Journal of Physiology, vol. 526, no. 1, pp. 203–210, 2000. View at Publisher · View at Google Scholar
  28. D. L. Johannsen, K. E. Conley, S. Bajpeyi et al., “Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 1, pp. 242–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Larsen, M. Hey-Mogensen, R. Rabøl, N. Stride, J. W. Helge, and F. Dela, “The influence of age and aerobic fitness: effects on mitochondrial respiration in skeletal muscle,” Acta Physiologica (Oxford), vol. 205, no. 3, pp. 423–432, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Konopka, M. K. Suer, C. A. Wolff, and M. P. Harber, “Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training,” The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, vol. 69, no. 4, pp. 371–378, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. N. T. Broskey, C. Greggio, A. Boss et al., “Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 5, pp. 1852–1861, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Z. Springer and K. F. Macleod, “Mitophagy: mechanisms and role in human disease,” The Journal of Pathology, vol. 240, no. 3, pp. 253–255, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. W. X. Ding and X. M. Yin, “Mitophagy: mechanisms, pathophysiological roles, and analysis,” Biological Chemistry, vol. 393, no. 7, pp. 547–564, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Eiyama and K. Okamoto, “PINK1/Parkin-mediated mitophagy in mammalian cells,” Current Opinion in Cell Biology, vol. 33, pp. 95–101, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. T. M. Durcan, M. Y. Tang, J. R. Pérusse et al., “USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin,” The EMBO Journal, vol. 33, no. 21, pp. 2473–2491, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. L. C. Gomes and L. Scorrano, “Mitochondrial morphology in mitophagy and macroautophagy,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1833, no. 1, pp. 205–212, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. P. A. Ney, “Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1853, no. 10, Part B, pp. 2775–2783, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Matsuda, “Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade,” Journal of Biochemistry, vol. 159, no. 4, pp. 379–385, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Gottlieb and R. S. Carreira, “Autophagy in health and disease. 5. Mitophagy as a way of life,” American Journal of Physiology - Cell Physiology, vol. 299, no. 2, pp. C203–C210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. E. Liu and W. A. Frazier, “Phosphorylation of the BNIP3 C-terminus inhibits mitochondrial damage and cell death without blocking autophagy,” PLoS One, vol. 10, no. 6, article e0129667, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Ploumi, I. Daskalaki, and N. Tavernarakis, “Mitochondrial biogenesis and clearance: a balancing act,” FEBS Journal, vol. 284, no. 2, pp. 183–195, 2017. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Gaugler, A. Brown, E. Merrell, M. DiSanto-Rose, J. A. Rathmacher, and T. H. Reynolds 4th, “PKB signaling and atrogene expression in skeletal muscle of aged mice,” Journal of Applied Physiology, vol. 111, no. 1, pp. 192–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Joseph, P. J. Adhihetty, N. R. Wawrzyniak et al., “Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging,” PLoS One, vol. 8, no. 7, article e69327, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. M. F. O’Leary, A. Vainshtein, S. Iqbal, O. Ostojic, and D. A. Hood, “Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle,” American Journal of Physiology - Cell Physiology, vol. 304, no. 5, pp. C422–C430, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. R. A. Gioscia-Ryan, M. L. Battson, L. M. Cuevas, M. C. Zigler, A. L. Sindler, and D. R. Seals, “Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice,” Aging (Albany, New York), vol. 8, no. 11, pp. 2897–2914, 2016. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Joseph, P. J. Adhihetty, T. W. Buford et al., “The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals,” Aging Cell, vol. 11, no. 5, pp. 801–809, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Kang, E. Chung, G. Diffee, and L. L. Ji, “Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α,” Experimental Gerontology, vol. 48, no. 11, pp. 1343–1350, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Koltai, N. Hart, A. W. Taylor et al., “Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training,” American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol. 303, no. 2, pp. R127–R134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Lanza, D. K. Short, K. R. Short et al., “Endurance exercise as a countermeasure for aging,” Diabetes, vol. 57, no. 11, pp. 2933–2942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Safdar, M. J. Hamadeh, J. J. Kaczor, S. Raha, J. de Beer, and M. A. Tarnopolsky, “Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults,” PLoS One, vol. 5, no. 5, article e10778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Chabi, V. Ljubicic, K. J. Menzies, J. H. Huang, A. Saleem, and D. A. Hood, “Mitochondrial function and apoptotic susceptibility in aging skeletal muscle,” Aging Cell, vol. 7, no. 1, pp. 2–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Picca, V. Pesce, F. Fracasso, A. M. Joseph, C. Leeuwenburgh, and A. M. S. Lezza, “Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver,” PLoS One, vol. 8, no. 9, article e74644, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Viña, M. C. Gomez-Cabrera, C. Borras et al., “Mitochondrial biogenesis in exercise and in ageing,” Advanced Drug Delivery Reviews, vol. 61, no. 14, pp. 1369–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Derbré, M. C. Gomez-Cabrera, A. L. Nascimento et al., “Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training,” Age (Dordrecht, Netherlands), vol. 34, no. 3, pp. 669–679, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. M. M. Dinardo, C. Musicco, F. Fracasso et al., “Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats,” Biochemical and Biophysical Research Communications, vol. 301, no. 1, pp. 187–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Picca, F. Fracasso, V. Pesce et al., “Age-and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding,” Age (Dordrecht, Netherlands), vol. 35, no. 5, pp. 1607–1620, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Picca, V. Pesce, F. Fracasso, A. M. Joseph, C. Leeuwenburgh, and A. M. S. Lezza, “A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1840, no. 7, pp. 2184–2191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Bori, Z. Zhao, E. Koltai et al., “The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle,” Experimental Gerontology, vol. 47, no. 6, pp. 417–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Capitanio, M. Vasso, S. De Palma et al., “Specific protein changes contribute to the differential muscle mass loss during ageing,” Proteomics, vol. 16, no. 4, pp. 645–656, 2016. View at Publisher · View at Google Scholar · View at Scopus
  60. J. P. Leduc-Gaudet, M. Picard, F. St-Jean Pelletier et al., “Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice,” Oncotarget, vol. 6, no. 20, pp. 17923–17937, 2015. View at Publisher · View at Google Scholar
  61. K. L. Stauch, P. R. Purnell, and H. S. Fox, “Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function,” Aging (Albany, New York), vol. 6, no. 4, pp. 320–334, 2014. View at Publisher · View at Google Scholar
  62. E. Bossy-Wetzel, M. J. Barsoum, A. Godzik, R. Schwarzenbacher, and S. A. Lipton, “Mitochondrial fission in apoptosis, neurodegeneration and aging,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 706–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Sebastián and A. Zorzano, “When MFN2 (mitofusin 2) met autophagy: a new age for old muscles,” Autophagy, vol. 12, no. 11, pp. 2250-2251, 2016. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Sebastián, E. Sorianello, J. Segalés et al., “Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway,” The EMBO Journal, vol. 35, no. 15, pp. 1677–1693, 2016. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Niemann, C. Johne, S. Schröder et al., “An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle,” Free Radical Biology & Medicine, vol. 102, pp. 174–187, 2017. View at Publisher · View at Google Scholar
  66. G. Distefano, R. A. Standley, J. J. Dubé et al., “Chronological age does not influence ex-vivo mitochondrial respiration and quality control in skeletal muscle,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 72, no. 4, pp. 535–542, 2017. View at Publisher · View at Google Scholar
  67. D. Capitanio, R. Leone, C. Fania, E. Torretta, and C. Gelfi, “Sprague Dawley rats: a model of successful heart aging,” EuPA Open Proteomics, vol. 12, pp. 22–30, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. D. I. Ogborn, B. R. McKay, J. D. Crane et al., “Effects of age and unaccustomed resistance exercise on mitochondrial transcript and protein abundance in skeletal muscle of men,” American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol. 308, no. 8, pp. R734–R741, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. L. A. Scarffe, D. A. Stevens, V. L. Dawson, and T. M. Dawson, “Parkin and PINK1: much more than mitophagy,” Trends in Neurosciences, vol. 37, no. 6, pp. 315–324, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. O. Krestinina, T. Azarashvili, Y. Baburina et al., “In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals,” Neurochemistry International, vol. 80, pp. 41–50, 2015. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Gram, A. Vigelsø, T. Yokota et al., “Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men,” Experimental Gerontology, vol. 58, pp. 269–278, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Zampieri, L. Pietrangelo, S. Loefler et al., “Lifelong physical exercise delays age-associated skeletal muscle decline,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 70, no. 2, pp. 163–173, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Ko, P. Abadir, R. Marx et al., “Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 10 null mouse,” Experimental Gerontology, vol. 73, pp. 23–27, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Sgarbi, P. Matarrese, M. Pinti et al., “Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians,” Aging (Albany, New York), vol. 6, no. 4, pp. 296–310, 2014. View at Publisher · View at Google Scholar
  75. R. E. Tanner, L. B. Brunker, J. Agergaard et al., “Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation,” The Journal of Physiology, vol. 593, no. 18, pp. 4259–4273, 2015. View at Publisher · View at Google Scholar · View at Scopus
  76. B. K. Pedersen and B. Saltin, “Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases,” Scandinavian Journal of Medicine & Science in Sports, vol. 25, pp. 1–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  77. B. T. Tam and P. M. Siu, “Autophagic cellular responses to physical exercise in skeletal muscle,” Sports Medicine, vol. 44, no. 5, pp. 625–640, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Barbieri, D. Agostini, E. Polidori et al., “The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 917085, 15 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  79. O. M. Palacios, J. J. Carmona, S. Michan et al., “Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle,” Aging (Albany, New York), vol. 1, no. 9, pp. 771–783, 2009. View at Publisher · View at Google Scholar
  80. V. Ljubicic, A. M. Joseph, P. J. Adhihetty et al., “Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle,” Aging (Albany, New York), vol. 1, no. 9, pp. 818–830, 2009. View at Publisher · View at Google Scholar
  81. J. N. Cobley, J. D. Bartlett, A. Kayani et al., “PGC-1a transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males,” Biogerontology, vol. 13, no. 6, pp. 621–631, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Iversen, P. Krustrup, H. N. Rasmussen, U. F. Rasmussen, B. Saltin, and H. Pilegaard, “Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly,” Experimental Gerontology, vol. 46, no. 8, pp. 670–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. A. M. Gusdon, J. Callio, G. DiStefano et al., “Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice,” Experimental Gerontology, vol. 90, pp. 1–13, 2017. View at Publisher · View at Google Scholar
  84. M. Picard, B. J. Gentil, M. J. McManus et al., “Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle,” Journal of Applied Physiology, vol. 115, no. 10, pp. 1562–1571, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. C. E. Fealy, A. Mulya, N. Lai, and J. P. Kirwan, “Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle,” Journal of Applied Physiology, vol. 117, no. 3, pp. 239–245, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. J. S. Ju, S. I. Jeon, J. Y. Park et al., “Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition,” The Journal of Physiological Sciences, vol. 66, no. 5, pp. 417–430, 2016. View at Publisher · View at Google Scholar · View at Scopus
  87. M. J. Drummond, O. Addison, L. Brunker et al., “Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 69, no. 8, pp. 1040–1048, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Jamart, N. Benoit, J. M. Raymackers, H. J. Kim, C. K. Kim, and M. Francaux, “Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise,” European Journal of Applied Physiology, vol. 112, no. 8, pp. 3173–3177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. S. E. Wohlgemuth, H. A. Lees, E. Marzetti et al., “An exploratory analysis of the effects of a weight loss plus exercise program on cellular quality control mechanisms in older overweight women,” Rejuvenation Research, vol. 14, no. 3, pp. 315–324, 2011. View at Publisher · View at Google Scholar · View at Scopus