Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 4134093, 10 pages
https://doi.org/10.1155/2017/4134093
Research Article

Ziziphus nummularia Inhibits Inflammation-Induced Atherogenic Phenotype of Human Aortic Smooth Muscle Cells

1Department of Biology, American University of Beirut, Beirut, Lebanon
2Quality Assurance Department, Mondelēz Bahrain Biscuits W.L.L, Al Hidd, Bahrain
3Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
4Department of Pharmacology, Alexandria University, Alexandria, Egypt
5Department of Biology, United Arab Emirates University, Al-Ain, UAE
6Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar

Correspondence should be addressed to Ali H. Eid; bl.ude.bua@18ea

Received 24 March 2017; Accepted 2 April 2017; Published 16 May 2017

Academic Editor: Alexander N. Orekhov

Copyright © 2017 Manal Fardoun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Saleh Al-Shehabi, R. Iratni, and A. H. Eid, “Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells,” Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, vol. 23, no. 11, pp. 1068–1081, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Douglas and K. M. Channon, “The pathogenesis of atherosclerosis,” Medicine, vol. 38, no. 8, pp. 397–402, 2010. View at Publisher · View at Google Scholar
  3. T. Wang, D. Palucci, K. Law, B. Yanagawa, J. Yam, and J. Butany, “Atherosclerosis: pathogenesis and pathology,” Diagnostic Histopathology, vol. 18, no. 11, pp. 461–467, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Doran, N. Meller, and C. A. McNamara, “Role of smooth muscle cells in the initiation and early progression of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 812–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ullah, M. U. Khan, A. Mahmood et al., “An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan,” Journal of Ethnopharmacology, vol. 150, no. 3, pp. 918–924, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Goyal, M. Ghosh, B. P. Nagori, and D. Sasmal, “Analgesic and anti-inflammatory studies of cyclopeptide alkaloid fraction of leaves of Ziziyphus nummularia,” Saudi Journal of Biological Sciences, vol. 20, no. 4, pp. 365–371, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. R. P. Bodroth and M. Das, “Phytochemical screening and antimicrobial activity of ethanol and chloroform extract of Zizyphus nummularis Wt. & Arm,” African Journal of Biotechnology, vol. 11, no. 21, pp. 4929–4933, 2012. View at Google Scholar
  8. H. S. Yusufoglu, “Topical anti-inflammatory and wound healing activities of herbal gel of Ziziphus nummularia L. (F. Rhamnaceae) leaf extract,” International Journal of Pharmacology, vol. 7, no. 8, pp. 862–867, 2011. View at Google Scholar
  9. S. D. Ray, S. Ray, M. Zia-Ul-Haq, V. De Feo, and S. Dewanjee, “Pharmacological basis of the use of the root bark of Zizyphus nummularia Aubrev. (Rhamnaceae) as anti-inflammatory agent,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, p. 416, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G. Dureja and K. Dhiman, “Free radical scavenging potential and total phenolic and flavonoid content of Ziziphus mauritiana and Ziziphus nummularia fruit extracts,” International Journal of Green Pharmacy, vol. 6, no. 3, pp. 187–192, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Rajasekaran, B. Jaykar, R. Anandan, K. P. Aboobacker, and S. Vannamalar, “Anti-diabetic activity of leaves of Zizyphus nummularia by dexamethasone induced diabetic rat model,” International Journal of PharmTech Research, vol. 5, no. 2, pp. 844–851, 2013. View at Google Scholar
  12. S. Horigome, I. Yoshida, S. Ito et al., “Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells,” European Journal of Nutrition, vol. 56, no. 3, pp. 949–964, 2017. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Manduteanu, M. Voinea, F. Antohe et al., “Effect of enoxaparin on high glucose-induced activation of endothelial cells,” European Journal of Pharmacology, vol. 477, no. 3, pp. 269–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. H. Eid, K. Maiti, S. Mitra et al., “Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries,” American Journal of Physiology Heart and Circulatory Physiology, vol. 293, no. 3, pp. H1955–H1961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Eid, M. A. Chotani, S. Mitra, T. J. Miller, and N. A. Flavahan, “Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle alpha2C-adrenoceptors,” American Journal of Physiology Heart and Circulatory Physiology, vol. 295, no. 1, pp. H266–H272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Cao, Y. Jiang, J. Shi et al., “Artemisinin inhibits the proliferation, migration, and inflammatory reaction induced by tumor necrosis factor-alpha in vascular smooth muscle cells through nuclear factor kappa B pathway,” The Journal of Surgical Research, vol. 194, no. 2, pp. 667–678, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhong, W. Yu, J. Feng, Z. Fan, and J. Li, “Curcumin suppresses tumor necrosis factor-alpha-induced matrix metalloproteinase-2 expression and activity in rat vascular smooth muscle cells via the NF-kappaB pathway,” Experimental and Therapeutic Medicine, vol. 7, no. 6, pp. 1653–1658, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. R. E. Gerszten, Y. C. Lim, H. T. Ding et al., “Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: Implications for atherogenesis,” Circulation Research, vol. 82, no. 8, pp. 871–8, 1998. View at Publisher · View at Google Scholar
  19. A. Rahman and F. Fazal, “Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration,” Antioxidants & Redox Signaling, vol. 11, no. 4, pp. 823–839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Sun, M. X. Zhao, T. Y. Liu et al., “Salusin-beta induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFkappaB pathway,” Scientific Reports, vol. 6, p. 23596, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Frink, The Smooth Muscle Cell. The Pivot in Atherosclerosis. Inflammatory Atherosclerosis: Characteristics of the Injurious Agent, Heart Research Foundation, Sacramento (CA), 2002.
  22. A. Rudijanto, “The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis,” Acta Medica Indonesiana, vol. 39, no. 2, pp. 86–93, 2007. View at Google Scholar
  23. M. Schafers, O. Schober, and S. Hermann, “Matrix-metalloproteinases as imaging targets for inflammatory activity in atherosclerotic plaques,” Journal of Nuclear Medicine, vol. 51, no. 5, pp. 663–666, 2010. View at Publisher · View at Google Scholar
  24. Z. S. Galis, C. Johnson, D. Godin et al., “Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling,” Circulation Research, vol. 91, no. 9, pp. 852–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. P. Khan, M. Ahmad, M. Zafar, S. Sultana, M. I. Ali, and H. Sun, “Ethnomedicinal uses of edible wild fruits (EWFs) in Swat Valley, Northern Pakistan,” Journal of Ethnopharmacology, vol. 173, pp. 191–203, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. S. D. Ray and S. Dewanjee, “Isolation of a new triterpene derivative and in vitro and in vivo anticancer activity of ethanolic extract from root bark of Zizyphus nummularia Aubrev,” Natural Product Research, vol. 29, no. 16, pp. 1529–1536, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Fujiwara, A. Hayashida, K. Tsurushima et al., “Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages,” Journal of Agricultural and Food Chemistry, vol. 59, no. 9, pp. 4544–4552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Cheng, C. Zhu, J. Cao, and W. Jiang, “The protective effects of polyphenols from jujube peel (Ziziphus jujube Mill) on isoproterenol-induced myocardial ischemia and aluminum-induced oxidative damage in rats,” Food and Chemical Toxicology, vol. 50, no. 5, pp. 1302–1308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. W. Kang, J. S. Choi, J. Y. Bae et al., “Blockade of vascular angiogenesis by Aspergillus usamii var. shirousamii-transformed Angelicae Gigantis Radix and Zizyphus jujuba,” Nutrition Research and Practice, vol. 3, no. 1, pp. 3–8, 2009. View at Publisher · View at Google Scholar
  30. M. L. Eswari, R. V. Bharathi, and N. Jayshree, “Hypolipidemic activity on ethanolic extract of leaves of Ziziphus oenoplia (L) Mill. Gard,” International Journal of Pharmaceutical & Biological Archives, vol. 4, no. 1, pp. 136–141, 2013. View at Google Scholar
  31. H. A. El Rabey, E. S. Attia, M. N. Al-Seeni et al., “The hypolipidemic and antioxidant activity of Christ’s thorn (Ziziphus spina-christi) leaves powder in hypercholesterolemic male rats,” Life Science Journal, vol. 11, no. 10, pp. 1010–1021, 2014. View at Google Scholar
  32. H. Zargham and R. Zargham, “Tannin extracted from sumac inhibits vascular smooth muscle cell migration,” McGill Journal of Medicine, vol. 11, no. 2, pp. 119–123, 2008. View at Google Scholar
  33. L. Wang, L. H. Zhu, H. Jiang et al., “Grape seed proanthocyanidins attenuate vascular smooth muscle cell proliferation via blocking phosphatidylinositol 3-kinase-dependent signaling pathways,” Journal of Cellular Physiology, vol. 223, no. 3, pp. 713–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Hedin, B. A. Bottger, E. Forsberg, S. Johansson, and J. Thyberg, “Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells,” The Journal of Cell Biology, vol. 107, no. 1, pp. 307–319, 1988. View at Publisher · View at Google Scholar
  35. E. Ruoslahti, “Fibronectin and its receptors,” Annual Review of Biochemistry, vol. 57, no. 1, pp. 375–413, 1988. View at Publisher · View at Google Scholar
  36. J. G. Pickering, L. H. Chow, S. Li et al., “alpha5beta1 integrin expression and luminal edge fibronectin matrix assembly by smooth muscle cells after arterial injury,” The American Journal of Pathology, vol. 156, no. 2, pp. 453–465, 2000. View at Publisher · View at Google Scholar
  37. K. O. Yee, M. M. Rooney, C. M. Giachelli, S. T. Lord, and S. M. Schwartz, “Role of beta1 and beta3 integrins in human smooth muscle cell adhesion to and contraction of fibrin clots in vitro,” Circulation Research, vol. 83, no. 3, pp. 241–251, 1998. View at Publisher · View at Google Scholar
  38. H. C. Stary, A. B. Chandler, R. E. Dinsmore et al., “A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 9, pp. 1512–1531, 1995. View at Publisher · View at Google Scholar
  39. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Mestas and K. Ley, “Monocyte-endothelial cell interactions in the development of atherosclerosis,” Trends in Cardiovascular Medicine, vol. 18, no. 6, pp. 228–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Chistiakov, Y. V. Bobryshev, and A. N. Orekhov, “Macrophage-mediated cholesterol handling in atherosclerosis,” Journal of Cellular and Molecular Medicine, vol. 20, no. 1, pp. 17–28, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. K. D. O’Brien, T. O. McDonald, A. Chait, M. D. Allen, and C. E. Alpers, “Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content,” Circulation, vol. 93, no. 4, pp. 672–682, 1996. View at Publisher · View at Google Scholar
  44. I. Pateras, C. Giaginis, C. Tsigris, E. Patsouris, and S. Theocharis, “NF-kappaB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links,” Expert Opinion on Therapeutic Targets, vol. 18, no. 9, pp. 1089–1101, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Kim, S. O. Moon, S. H. Kim, H. J. Kim, Y. S. Koh, and G. Y. Koh, “Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells,” The Journal of Biological Chemistry, vol. 276, no. 10, pp. 7614–7620, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Pamukcu, G. Y. Lip, and E. Shantsila, “The nuclear factor—kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease,” Thrombosis Research, vol. 128, no. 2, pp. 117–123, 2011. View at Publisher · View at Google Scholar · View at Scopus