Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 4271065, 13 pages
https://doi.org/10.1155/2017/4271065
Research Article

Cold Atmospheric Plasma Induces Apoptosis and Oxidative Stress Pathway Regulation in T-Lymphoblastoid Leukemia Cells

1Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, C.so D’Augusto 237, 47921 Rimini, Italy
2Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Via Saragozza 8, 40123 Bologna, Italy

Correspondence should be addressed to Eleonora Turrini; ti.obinu@inirrut.aronoele

Received 2 March 2017; Revised 18 May 2017; Accepted 19 June 2017; Published 29 August 2017

Academic Editor: Eva-Maria Hanschmann

Copyright © 2017 Eleonora Turrini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Darny, J. M. Pouvesle, V. Puech, C. Douat, S. Dozias, and E. Robert, “Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements,” Plasma Sources Science and Technology, vol. 26, no. 4, article 045008, 2017. View at Publisher · View at Google Scholar
  2. A. Lin, B. Truong, S. Patel et al., “Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress,” International Journal of Molecular Sciences, vol. 18, no. 5, p. 966, 2017. View at Publisher · View at Google Scholar
  3. S. A. Norberg, E. Johnsen, and M. J. Kushner, “Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields,” Journal of Physics D: Applied Physics, vol. 49, no. 18, article 185201, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, “Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects,” Physics Reports, vol. 630, pp. 1–84, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Hirst, F. M. Frame, M. Arya, N. J. Maitland, and D. O’Connell, “Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future,” Tumor Biology, vol. 37, no. 6, pp. 7021–7031, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Akhlaghi, H. Rajaei, A. S. Mashayekh et al., “Determination of the optimum conditions for lung cancer cells treatment using cold atmospheric plasma,” Physics of Plasmas, vol. 23, no. 10, article 103512, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Chernets, D. S. Kurpad, V. Alexeev, D. B. Rodrigues, and T. A. Freeman, “Reaction chemistry generated by nanosecond pulsed dielectric barrier discharge treatment is responsible for the tumor eradication in the B16 melanoma mouse model,” Plasma Processes and Polymers, vol. 12, no. 12, pp. 1400–1409, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. W. H. Chung, “Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation,” Archives of Pharmacal Research, vol. 39, no. 1, pp. 1–9, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Fridman, A. Shereshevsky, M. M. Jost et al., “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chemistry and Plasma Processing, vol. 27, no. 2, pp. 163–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Chen, L. Lin, X. Cheng, E. Gjika, and M. Keidar, “Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water,” Biointerphases, vol. 11, no. 3, article 031010, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gherardi, E. Turrini, R. Laurita et al., “Atmospheric non-equilibrium plasma promotes cell death and cell-cycle arrest in a lymphoma cell line,” Plasma Processes and Polymers, vol. 12, no. 12, pp. 1354–1363, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Tanaka, K. Nakamura, M. Mizuno et al., “Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects,” Scientific Reports, vol. 6, article 36282, 2016. View at Google Scholar
  13. T. Adachi, H. Tanaka, S. Nonomura, H. Hara, S. Kondo, and M. Hori, “Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network,” Free Radical Biology and Medicine, vol. 79, pp. 28–44, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Torii, S. Yamada, K. Nakamura et al., “Effectiveness of plasma treatment on gastric cancer cells,” Gastric Cancer, vol. 18, no. 3, pp. 635–643, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Kumar, J. H. Park, S. N. Jeon, B. S. Park, E. H. Choi, and P. Attri, “The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells,” Journal of Physics D: Applied Physics, vol. 49, no. 11, article 115401, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Florian, N. Merbahi, and M. Yousfi, “Genotoxic and cytotoxic effects of plasma-activated media on multicellular tumor spheroids,” Plasma Medicine, vol. 6, no. 1, pp. 47–57, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Yan, N. Nourmohammadi, A. Talbot, J. H. Sherman, and M. Keidar, “The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium,” Journal of Physics D: Applied Physics, vol. 49, no. 27, article 274001, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Yan, N. Nourmohammadi, K. Bian, F. Murad, J. H. Sherman, and M. Keidar, “Stabilizing the cold plasma-stimulated medium by regulating medium’s composition,” Scientific Reports, vol. 6, article 26016, 2016. View at Google Scholar
  19. P. Bao, X. Lu, M. He, and D. Liu, “Kinetic analysis of delivery of plasma reactive species into cells immersed in culture media,” IEEE Transactions on Plasma Science, vol. 44, no. 11, pp. 2673–2681, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Wende, P. Williams, J. Dalluge et al., “Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet,” Biointerphases, vol. 10, no. 2, article 029518, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. D. B. Graves, “Reactive species from cold atmospheric plasma: implications for cancer therapy,” Plasma Processes and Polymers, vol. 11, no. 12, pp. 1120–1127, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Ahn, K. I. Kim, N. N. Hoan et al., “Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma,” PLoS One, vol. 9, no. 1, article e86173, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Ma, C. S. Ha, S. W. Hwang et al., “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One, vol. 9, no. 4, article e91947, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Boehm, C. Heslin, P. J. Cullen, and P. Bourke, “Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma,” Scientific Reports, vol. 6, article 21464, 2016. View at Google Scholar
  25. M. Vandamme, E. Robert, S. Pesnel et al., “Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results,” Plasma Processes and Polymers, vol. 7, no. 3-4, pp. 264–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Takeda, S. Yamada, N. Hattori et al., “Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer,” Annals of Surgical Oncology, vol. 24, no. 5, pp. 1188–1194, 2017. View at Publisher · View at Google Scholar
  27. F. Utsumi, H. Kajiyama, K. Nakamura et al., “Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo,” PLoS One, vol. 8, no. 12, article e81576, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. H. R. Metelmann, D. S. Nedrelow, C. Seebauer et al., “Head and neck cancer treatment and physical plasma,” Clinical Plasma Medicine, vol. 3, no. 1, pp. 17–23, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Miller, A. Lin, and A. Fridman, “Why target immune cells for plasma treatment of cancer,” Plasma Chemistry and Plasma Processing, vol. 36, no. 1, pp. 259–268, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Wink, H. B. Hines, R. Y. Cheng et al., “Nitric oxide and redox mechanisms in the immune response,” Journal of Leukocyte Biology, vol. 89, no. 6, pp. 873–891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Miller, A. Lin, G. Fridman, D. Dobrynin, and A. Fridman, “Plasma stimulation of migration of macrophages,” Plasma Processes and Polymers, vol. 11, no. 12, pp. 1193–1197, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Laurita, F. Alviano, C. Marchionni et al., “A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms,” Journal of Physics D: Applied Physics, vol. 49, no. 36, article 364003, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Bryce, J. C. Bemis, S. L. Avlasevich, and S. D. Dertinger, “in vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 630, no. 1, pp. 78–91, 2007. View at Google Scholar
  34. M. Fenech and A. A. Morley, “Measurement of micronuclei in lymphocytes,” Mutation Research/Environmental Mutagenesis and Related Subjects, vol. 147, no. 1-2, pp. 29–36, 1985. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Fenech, “The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 285, no. 1, pp. 35–44, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Kuchenbecker, N. Bibinov, A. Kaemlimg, D. Wandke, P. Awakowicz, and W. Viöl, “Characterization of DBD plasma source for biomedical applications,” Journal of Physics D: Applied Physics, vol. 42, no. 4, article 045212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kiraz, A. Adan, M. Kartal Yandim, and Y. Baran, “Major apoptotic mechanisms and genes involved in apoptosis,” Tumor Biology, vol. 37, no. 7, pp. 8471–8486, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Bragado, A. Armesilla, A. Silva, and A. Porras, “Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation,” Apoptosis, vol. 12, no. 9, pp. 1733–1742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Raisova, A. M. Hossini, J. Eberle et al., “The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis,” Journal of Investigative Dermatology, vol. 117, no. 2, pp. 333–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Adams and S. Cory, “The Bcl-2 protein family: arbiters of cell survival,” Science, vol. 281, no. 5381, pp. 1322–1326, 1998. View at Publisher · View at Google Scholar
  41. D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein, “Comparing protein abundance and mRNA expression levels on a genomic scale,” Genome Biology, vol. 4, no. 9, p. 117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. W. Voehringer and R. E. Meyn, “Redox aspects of Bcl-2 function,” Antioxidants and Redox Signaling, vol. 2, no. 3, pp. 537–550, 2000. View at Publisher · View at Google Scholar
  43. S. Willimott and S. D. Wagner, “Post-transcriptional and post-translational regulation of Bcl2,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1571–1575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Xin, F. Gao, W. S. May, T. Flagg, and X. Deng, “Protein kinase Cζ abrogates the proapoptotic function of Bax through phosphorylation,” Journal of Biological Chemistry, vol. 282, no. 29, pp. 21268–21277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Kaushik, N. Kumar, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma,” Plasma Processes and Polymers, vol. 11, no. 12, pp. 1175–1187, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Bundscherer, K. Wende, K. Ottmüller et al., “Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines,” Immunobiology, vol. 218, no. 10, pp. 1248–1255, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Duval, I. Marinov, G. Bousquet et al., “Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma,” PLoS One, vol. 8, no. 12, article e83001, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Sestili and C. Fimognari, “Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species,” BioMed Research International, vol. 2015, Article ID 402386, 9 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. R. B. Hamanaka and N. S. Chandel, “Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes,” Trends in Biochemical Sciences, vol. 35, no. 9, pp. 505–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Raj, T. Ide, A. U. Gurkar et al., “Selective killing of cancer cells by a small molecule targeting the stress response to ROS,” Nature, vol. 475, no. 7355, pp. 231–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. W. Lee, G. Y. Park, Y. S. Seo, Y. H. Im, S. B. Shim, and H. J. Lee, “Modelling of atmospheric pressure plasmas for biomedical applications,” Journal of Physics D: Applied Physics, vol. 44, no. 5, article 053001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. P. T. Schumacker, “Reactive oxygen species in cancer cells: live by the sword, die by the sword,” Cancer Cell, vol. 10, no. 3, pp. 175-176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Bauer and D. B. Graves, “Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species,” Plasma Processes and Polymers, vol. 13, no. 12, pp. 1157–1178, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Kalghatgi, C. M. Kelly, E. Cerchar et al., “Effects of non-thermal plasma on mammalian cells,” PLoS One, vol. 6, no. 1, article e16270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Y. Liou and P. Storz, “Reactive oxygen species in cancer,” Free Radical Research, vol. 44, no. 5, pp. 479–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Fukai and M. Ushio-Fukai, “Superoxide dismutases: role in redox signaling, vascular function, and diseases,” Antioxidants & Redox Signaling, vol. 15, no. 6, pp. 1583–1606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Lüersen, D. Stegehake, J. Daniel et al., “The glutathione reductase GSR-1 determines stress tolerance and longevity in Caenorhabditis elegans,” PLoS One, vol. 8, no. 4, article e60731, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. E. A. Ratovitski, X. Cheng, D. Yan et al., “Anti-cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma,” Plasma Processes and Polymers, vol. 11, no. 12, pp. 1128–1137, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. G. P. Watters, D. J. Smart, J. S. Harvey, and C. A. Austin, “H2AX phosphorylation as a genotoxicity endpoint,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 679, no. 1, pp. 50–58, 2009. View at Google Scholar
  60. T. T. Paull, E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W. M. Bonner, “A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage,” Current Biology, vol. 10, no. 15, pp. 886–895, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. K. P. Arjunan, V. K. Sharma, and S. Ptasinska, “Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review,” International Journal of Molecular Sciences, vol. 16, no. 2, pp. 2971–3016, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Rybak, A. Hoang, L. Bujnowicz et al., “Low level phosphorylation of histone H2AX on serine 139 (gammaH2AX) is not associated with DNA double-strand breaks,” Oncotarget, vol. 7, no. 31, pp. 49574–49587, 2016. View at Publisher · View at Google Scholar · View at Scopus
  63. J. E. Cleaver, “γH2Ax: biomarker of damage or functional participant in DNA repair “all that glitters is not gold!”,” Photochemistry and Photobiology, vol. 87, no. 6, pp. 1230–1239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. W. P. Roos and B. Kaina, “DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis,” Cancer Letters, vol. 332, no. 2, pp. 237–248, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Boxhammer, Y. F. Li, J. Köritzer et al., “Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 753, no. 1, pp. 23–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Wende, S. Bekeschus, A. Schmidt et al., “Risk assessment of a cold argon plasma jet in respect to its mutagenicity,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 798, pp. 48–54, 2016. View at Google Scholar
  67. S. Kluge, S. Bekeschus, C. Bender et al., “Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model,” PLoS One, vol. 11, no. 9, article e0160667, 2016. View at Publisher · View at Google Scholar · View at Scopus