Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017 (2017), Article ID 7968905, 9 pages
https://doi.org/10.1155/2017/7968905
Research Article

Inhibition of miR-302 Suppresses Hypoxia-Reoxygenation-Induced H9c2 Cardiomyocyte Death by Regulating Mcl-1 Expression

1Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
2College of Medicine, Chang Gung University, Taoyuan, Taiwan

Correspondence should be addressed to Chi-Hsiao Yeh; wt.gro.hmgc@lcchey

Received 10 November 2016; Revised 30 January 2017; Accepted 7 March 2017; Published 11 April 2017

Academic Editor: Jaideep Banerjee

Copyright © 2017 Yao-Ching Fang and Chi-Hsiao Yeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Mortensen, M. Serra, J. A. Steitz, and S. Vasudevan, “Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 20, pp. 8281–8286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Cheng, P. Zhu, J. Yang et al., “Ischaemic preconditioning-regulated mir-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target pdcd4,” Cardiovascular Research, vol. 87, no. 3, pp. 431–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Wang, T. An, L. Y. Zhou et al., “E2F1-regulated miR-30b suppresses cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death,” Cell Death and Differentiation, vol. 22, no. 5, pp. 743–754, 2014. View at Google Scholar
  4. J. Y. Kim, K. K. Shin, A. L. Lee et al., “MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells,” Cell Death & Disease, vol. 5, no. 8, article e1385, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. K. T. Kuppusamy, H. Sperber, and H. Ruohola-Baker, “MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy,” Current Molecular Medicine, vol. 13, no. 5, pp. 757–764, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang, N. Fisher, S. E. Newey et al., “The impact of proliferative potential of umbilical cord-derived endothelial progenitor cells and hypoxia on vascular tubule formation in vitro,” Stem Cells and Development, vol. 18, no. 2, pp. 359–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhou, X. Dong, Q. Zhou et al., “microRNA expression profiling of heart tissue during fetal development,” International Journal of Molecular Medicine, vol. 33, no. 5, pp. 1250–1260, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zou, W. Liu, J. Zhang, and D. Xiang, “miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1,” Molecular Medicine Reports, vol. 14, no. 1, pp. 1033–1039, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. H. D. White, P. E. Aylward, Z. Huang et al., “Mortality and morbidity remain high despite captopril and/or valsartan therapy in elderly patients with left ventricular systolic dysfunction, heart failure, or both after acute myocardial infarction: results from the valsartan in acute myocardial infarction trial (VALIANT),” Circulation, vol. 112, no. 22, pp. 3391–3399, 2005. View at Google Scholar
  10. C. H. Yeh, T. P. Chen, Y. C. Wang, Y. M. Lin, and S. W. Fang, “MicroRNA-27a regulates cardiomyocytic apoptosis during cardioplegia-induced cardiac arrest by targeting interleukin 10–related pathways,” Shock, vol. 38, no. 6, pp. 607–614, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Frank, J. Gantenberg, I. Boomgaarden et al., “MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target egln3/phd3,” Journal of Molecular and Cellular Cardiology, vol. 52, no. 3, pp. 711–717, 2011. View at Google Scholar
  12. J. Gong, J. P. Zhang, B. Li et al., “MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R,” Oncogene, vol. 32, no. 25, pp. 3071–3079, 2012. View at Google Scholar
  13. P. L. Hedley, A. L. Carlsen, K. M. Christiansen et al., “MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 74, no. 6, pp. 485–491, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hu, M. Huang, Z. Li et al., “MicroRNA-210 as a novel therapy for treatment of ischemic heart disease,” Circulation, vol. 122, Supplement 11, pp. S124–S131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Jia, J. Wang, Q. Shi et al., “SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition,” Apoptosis, vol. 21, no. 2, pp. 174–183, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Rane, M. He, D. Sayed et al., “Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes,” Circulation Research, vol. 104, no. 7, pp. 879–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Sun, Y. Zhou, H. Li et al., “Over-expression of microRNA-494 up-regulates hypoxia-inducible factor-1 alpha expression via pi3k/akt pathway and protects against hypoxia-induced apoptosis,” Journal of Biomedical Science, vol. 20, no. 1, p. 100, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zou, R. Yang, J. Hao et al., “Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8091–8098, 2003. View at Google Scholar
  19. B. A. Croker, J. A. O'Donnell, C. J. Nowell et al., “Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 32, pp. 13135–13140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Valencia-Sanchez, J. Liu, G. J. Hannon, and R. Parker, “Control of translation and mRNA degradation by miRNAs and siRNAs,” Genes & Development, vol. 20, no. 5, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Thomson, C. P. Bracken, and G. J. Goodall, “Experimental strategies for microRNA target identification,” Nucleic Acids Research, vol. 39, no. 16, pp. 6845–6853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Foja, M. Jung, B. Harwardt, D. Riemann, O. Pelz-Ackermann, and I. S. Schroeder, “Hypoxia supports reprogramming of mesenchymal stromal cells via induction of embryonic stem cell-specific microRNA-302 cluster and pluripotency-associated genes,” Cellular Reprogramming, vol. 15, no. 1, pp. 68–79, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. K. E. Hawkins, T. V. Sharp, and T. R. McKay, “The role of hypoxia in stem cell potency and differentiation,” Regenerative Medicine, vol. 8, no. 6, pp. 771–782, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Betel, A. Koppal, P. Agius, C. Sander, and C. Leslie, “Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites,” Genome Biology, vol. 11, no. 8, p. R90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Liao, X. Bao, L. Liu et al., “MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition,” The Journal of Biological Chemistry, vol. 286, no. 19, pp. 17359–17364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. L. Montgomery and E. van Rooij, “MicroRNA regulation as a therapeutic strategy for cardiovascular disease,” Current Drug Targets, vol. 11, no. 8, pp. 936–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Song, B. Liu, H. Y. Diao et al., “Downregulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1,” Oncotarget, vol. 7, no. 26, pp. 39740–39757, 2016. View at Publisher · View at Google Scholar
  28. M. Li, P. Gao, and J. Zhang, “Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases,” International Journal of Molecular Sciences, vol. 17, no. 3, p. 332, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Tian, Y. Liu, T. Wang et al., “A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice,” Science Translational Medicine, vol. 7, no. 279, p. 279ra38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. Yang, T. Chiba, B. Brill et al., “Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes,” International Journal of Cancer, vol. 137, no. 10, pp. 2296–22309, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Abbate, R. Bussani, M. S. Amin, G. W. Vetrovec, and A. Baldi, “Acute myocardial infarction and heart failure: role of apoptosis,” The International Journal of Biochemistry & Cell Biology, vol. 38, no. 11, pp. 1834–1840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Ye, J. R. Perez-Polo, J. Qian, and Y. Birnbaum, “The role of microRNA in modulating myocardial ischemia-reperfusion injury,” Physiological Genomics, vol. 43, no. 10, pp. 534–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. L. Thomas, D. J. Roberts, D. A. Kubli et al., “Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure,” Genes & Development, vol. 27, no. 12, pp. 1365–13677, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Wang, M. Bathina, J. Lynch et al., “Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction,” Genes & Development, vol. 27, no. 12, pp. 1351–1364, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Wang, C. Y. Liu, X. J. Zhang et al., “miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury,” Cell Death and Differentiation, vol. 22, no. 6, pp. 1058–1068, 2014. View at Google Scholar
  37. A. Barroso-delJesus, C. Romero-Lopez, G. Lucena-Aguilar et al., “Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter,” Molecular and Cellular Biology, vol. 28, no. 21, pp. 6609–6619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Kumar, N. M. Patel, A. M. Nicholson, A. L. Kalen, E. H. Sarsour, and P. C. Goswami, “Reactive oxygen species mediate microRNA-302 regulation of AT-rich interacting domain 4a and C-C motif ligand 5 expression during transitions between quiescence and proliferation,” Free Radical Biology & Medicine, vol. 53, no. 4, pp. 974–982, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Gao, X. Zhu, and Y. Dou, “The miR-302/367 cluster: a comprehensive update on its evolution and functions,” Open Biology, vol. 5, no. 12, p. 150138, 2015. View at Publisher · View at Google Scholar · View at Scopus