Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 8475125, 11 pages
https://doi.org/10.1155/2017/8475125
Review Article

Cell Signaling with Extracellular Thioredoxin and Thioredoxin-Like Proteins: Insight into Their Mechanisms of Action

1INSERM, U968, Sorbonne Universités, 75012 Paris, France
2UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, 75012 Paris, France
3CNRS, UMR_7210, 75012 Paris, France

Correspondence should be addressed to Thierry Léveillard; rf.mresni@drallievel.yrreiht

Received 24 May 2017; Revised 6 July 2017; Accepted 17 July 2017; Published 12 September 2017

Academic Editor: Sergio Di Meo

Copyright © 2017 Thierry Léveillard and Najate Aït-Ali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Holmgren, “Thioredoxin,” Annual Review of Biochemistry, vol. 54, pp. 237–271, 1985. View at Publisher · View at Google Scholar
  2. Y. M. Go, J. D. Chandler, and D. P. Jones, “The cysteine proteome,” Free Radical Biology and Medicine, vol. 84, pp. 227–245, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. C. E. Paulsen and K. S. Carroll, “Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery,” Chemical Reviews, vol. 113, no. 7, pp. 4633–4679, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Tagaya, Y. Maeda, A. Mitsui et al., “ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction,” The EMBO Journal, vol. 8, no. 3, pp. 757–764, 1989. View at Google Scholar
  5. E. McNeill, M. J. Crabtree, N. Sahgal et al., “Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation,” Free Radical Biology and Medicine, vol. 79, pp. 206–216, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Coffin, S. H. Hughes, and H. E. Varmus, “The interactions of retroviruses and their hosts,” in Retroviruses, J. M. Coffin, S. H. Hughes, and H. E. Varmus, Eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), USA, 1997. View at Google Scholar
  7. K. Teshigawara, M. Maeda, K. Nishino et al., “Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression,” The Journal of Molecular and Cellular Immunology, vol. 2, no. 1, pp. 17–26, 1985. View at Google Scholar
  8. N. Wakasugi, Y. Tagaya, H. Wakasugi et al., “Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 21, pp. 8282–8286, 1990. View at Publisher · View at Google Scholar
  9. Y. Matsuo and J. Yodoi, “Extracellular thioredoxin: a therapeutic tool to combat inflammation,” Cytokine & Growth Factor Reviews, vol. 24, no. 4, pp. 345–353, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yodoi and M. Maeda, “Discovery of ATL: an odyssey in restrospect,” International Journal of Hematology, vol. 94, no. 5, pp. 423–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Son, N. Kato, T. Horibe et al., “Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling,” Antioxidants & Redox Signaling, vol. 11, no. 10, pp. 2595–2605, 2009. View at Publisher · View at Google Scholar
  12. J. Bernhagen, R. Krohn, H. Lue et al., “MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment,” Nature Medicine, vol. 13, no. 5, pp. 587–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Leng, C. N. Metz, Y. Fang et al., “MIF signal transduction initiated by binding to CD74,” The Journal of Experimental Medicine, vol. 197, no. 11, pp. 1467–1476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. G. Nobre, J. M. G. de Araujo, T. A. A. D. Fernandes et al., “Macrophage migration inhibitory factor (MIF): biological activities and relation with cancer,” Pathology & Oncology Research, vol. 23, no. 2, pp. 235–244, 2017. View at Publisher · View at Google Scholar · View at Scopus
  15. C. P. Fan, D. Rajasekaran, M. A. Syed et al., “MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 27, pp. 10994–10999, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Ouertatani-Sakouhi, F. El-Turk, B. Fauvet et al., “Identification and characterization of novel classes of macrophage migration inhibitory factor (MIF) inhibitors with distinct mechanisms of action,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26581–26598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Schwertassek, Y. Balmer, M. Gutscher et al., “Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1,” The EMBO Journal, vol. 26, no. 13, pp. 3086–3097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Holmgren, “Antioxidant function of thioredoxin and glutaredoxin systems,” Antioxidants & Redox Signaling, vol. 2, no. 4, pp. 811–820, 2000. View at Publisher · View at Google Scholar
  19. S. Z. Xu, P. Sukumar, F. Zeng et al., “TRPC channel activation by extracellular thioredoxin,” Nature, vol. 451, no. 7174, pp. 69–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Sengupta and A. Holmgren, “Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase,” World Journal of Biological Chemistry, vol. 5, no. 1, pp. 68–74, 2014. View at Publisher · View at Google Scholar
  21. B. B. Buchanan, A. Holmgren, J. P. Jacquot, and R. Scheibe, “Fifty years in the thioredoxin field and a bountiful harvest,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1820, no. 11, pp. 1822–1829, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. T. C. Laurent, E. C. Moore, and P. Reichard, “Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B,” The Journal of Biological Chemistry, vol. 239, pp. 3436–3444, 1964. View at Google Scholar
  23. A. Holmgren, “Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B,” European Journal of Biochemistry/FEBS, vol. 6, no. 4, pp. 475–484, 1968. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W.H. Freeman, New York, 5th edition, 2002.
  25. D. P. Jones and Y. M. Go, “Redox compartmentalization and cellular stress,” Diabetes, Obesity & Metabolism, vol. 12, Supplement 2, pp. 116–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Wang, Y. Wu, X. Li, X. Ma, and L. Zhong, “Thioredoxin and thioredoxin reductase control tissue factor activity by thiol redox-dependent mechanism,” The Journal of Biological Chemistry, vol. 288, no. 5, pp. 3346–3358, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. C. A. Lewis, S. J. Parker, B. P. Fiske et al., “Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells,” Molecular Cell, vol. 55, no. 2, pp. 253–263, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. E. S. Arner and A. Holmgren, “Physiological functions of thioredoxin and thioredoxin reductase,” European Journal of Biochemistry/FEBS, vol. 267, no. 20, pp. 6102–6109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Bertini, O. M. Z. Howard, H. F. Dong et al., “Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1783–1789, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. K. Balcewicz-Sablinska, E. E. Wollman, R. Gorti, and D. S. Silberstein, “Human eosinophil cytotoxicity enhancing factor. II. Multiple forms synthesized by U937 cells and their relationship to thioredoxin/adult T cell leukemia-derived factor,” Journal of Immunology, vol. 147, no. 7, pp. 2170–2174, 1991. View at Google Scholar
  31. K. Pekkari, R. Gurunath, E. S. Arner, and A. Holmgren, “Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 37474–37480, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Fritz-Wolf, S. Kehr, M. Stumpf, S. Rahlfs, and K. Becker, “Crystal structure of the human thioredoxin reductase-thioredoxin complex,” Nature Communications, vol. 2, p. 383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Chalmel, T. Leveillard, C. Jaillard et al., “Rod-derived cone viability factor-2 is a novel bifunctionalthioredoxin- like protein with therapeutic potential,” BMC Molecular Biology, vol. 8, p. 74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Buxbaum, S. E. Gandy, P. Cicchetti et al., “Processing of Alzheimer beta-A4 amyloid precursor protein - modulation by agents that regulate protein-phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 15, pp. 6003–6006, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Gil-Bea, S. Akterin, T. Persson et al., “Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer's disease brain,” EMBO Molecular Medicine, vol. 4, no. 10, pp. 1097–1111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Pekkari and A. Holmgren, “Truncated thioredoxin: physiological functions and mechanism,” Antioxidants & Redox Signaling, vol. 6, no. 1, pp. 53–61, 2004. View at Publisher · View at Google Scholar
  37. D. F. D. Mahmood, A. Abderrazak, D. Couchie et al., “Truncated thioredoxin (Trx-80) promotes proinflammatory macrophages of the M1 phenotype and enhances atherosclerosis,” Journal of Cellular Physiology, vol. 228, no. 7, pp. 1577–1583, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. King, J. Nowakowska, C. M. Karsten, J. Kohl, E. Renstrom, and A. M. Blom, “Truncated and full- length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces,” Journal of Immunology, vol. 188, no. 8, pp. 4103–4112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Pekkari, J. Avila-Carino, R. Gurunath, A. Bengtsson, A. Scheynius, and A. Holmgren, “Truncated thioredoxin (Trx80) exerts unique mitogenic cytokine effects via a mechanism independent of thiol oxido-reductase activity,” FEBS Letters, vol. 539, no. 1–3, pp. 143–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Rubartelli, A. Bajetto, G. Allavena, E. Wollman, and R. Sitia, “Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway,” The Journal of Biological Chemistry, vol. 267, no. 34, pp. 24161–24164, 1992. View at Google Scholar
  41. F. Ng and B. L. Tang, “Unconventional protein secretion in animal cells,” Methods in Molecular Biology, vol. 1459, pp. 31–46, 2016. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Tanudji, S. Hevi, and S. L. Chuck, “The nonclassic secretion of thioredoxin is not sensitive to redox state,” American Journal of Physiology-Cell Physiology, vol. 284, no. 5, pp. C1272–C1279, 2003. View at Publisher · View at Google Scholar
  43. S. J. Ryan, Retina, Elsevier Mosby, Philadelphia, 4th edition, 2006.
  44. M. Schultze, “Zur Anatomie und Physiologie der Retina,” Archiv für Mikroskopische Anatomie, vol. 2, no. 1, pp. 175–286, 1866. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Adler and M. Hatlee, “Plasticity and differentiation of embryonic retinal cells after terminal mitosis,” Science, vol. 243, no. 4889, pp. 391–393, 1989. View at Publisher · View at Google Scholar
  46. T. Leveillard, S. Mohand-Said, O. Lorentz et al., “Identification and characterization of rod-derived cone viability factor,” Nature Genetics, vol. 36, no. 7, pp. 755–759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Cronin, W. Raffelsberger, I. Lee-Rivera et al., “The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress,” Cell Death and Differentiation, vol. 17, no. 7, pp. 1199–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Elachouri, I. Lee-Rivera, E. Clerin et al., “Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage,” Free Radical Biology and Medicine, vol. 81, pp. 22–29, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Mei, A. Chaffiol, C. Kole et al., “The Thioredoxin encoded by the rod-derived cone viability factor gene protects cone photoreceptors against oxidative stress,” Antioxidants & Redox Signaling, vol. 24, no. 16, pp. 909–923, 2016. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Ait-Ali, R. Fridlich, G. Millet-Puel et al., “Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis,” Cell, vol. 161, no. 4, pp. 817–832, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. J. D. Ochrietor, T. P. Moroz, L. van Ekeris et al., “Retina-specific expression of 5A11/Basigin-2, a member of the immunoglobulin gene superfamily,” Investigative Ophthalmology & Visual Science, vol. 44, no. 9, pp. 4086–4096, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. D. N. Hebert and A. Carruthers, “Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1,” The Journal of Biological Chemistry, vol. 267, no. 33, pp. 23829–23838, 1992. View at Google Scholar
  53. E. T. Camacho, T. Leveillard, J. A. Sahel, and S. Wirkus, “Mathematical model of the role of RdCVF in the coexistence of rods and cones in a healthy eye,” Bulletin of Mathematical Biology, vol. 78, no. 7, pp. 1394–1409, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Leveillard, “Cancer metabolism of cone photoreceptors,” Oncotarget, vol. 6, no. 32, pp. 32285-32286, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. H. A. Krebs, “The Pasteur effect and the relations between respiration and fermentation,” Essays in Biochemistry, vol. 8, pp. 1–34, 1972. View at Google Scholar
  57. N. Chauhan, L. Farine, K. Pandey, A. K. Menon, and P. Bütikofer, “Lipid topogenesis—35 years on,” Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1861, 2016. View at Publisher · View at Google Scholar · View at Scopus
  58. L. C. Byrne, D. Dalkara, G. Luna et al., “Viral mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration,” The Journal of Clinical Investigation, vol. 125, no. 1, pp. 105–116, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Leveillard and J. A. Sahel, “Metabolic and redox signaling in the retina,” Cellular and Molecular Life Sciences, 2016. View at Publisher · View at Google Scholar · View at Scopus
  60. G. L. Fain, R. Hardie, and S. B. Laughlin, “Phototransduction and the evolution of photoreceptors,” Current Biology, vol. 20, no. 3, pp. R114–R124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Watts, I. D. Volotovski, and D. Marsh, “Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels,” Biochemistry, vol. 18, no. 22, pp. 5006–5013, 1979. View at Publisher · View at Google Scholar
  62. R. S. Molday and O. L. Moritz, “Photoreceptors at a glance,” Journal of Cell Science, vol. 128, no. 22, pp. 4039–4045, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Geller and P. A. Sieving, “Assessment of foveal cone photoreceptors in Stargardt’s macular dystrophy using a small dot detection task,” Vision Research, vol. 33, no. 11, pp. 1509–1524, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Leveillard and J. A. Sahel, “Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling,” Science Translational Medicine, vol. 2, no. 26, article 26ps16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Krol and B. Roska, “Rods feed cones to keep them alive,” Cell, vol. 161, no. 4, pp. 706–708, 2015. View at Publisher · View at Google Scholar · View at Scopus
  66. A. F. Wright, “A searchlight through the fog,” Nature Genetics, vol. 17, no. 2, pp. 132–134, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Cepko and C. Punzo, “Cell metabolism: sugar for sight,” Nature, vol. 522, no. 7557, pp. 428-429, 2015. View at Publisher · View at Google Scholar · View at Scopus