Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 8575263, 12 pages
https://doi.org/10.1155/2018/8575263
Review Article

The Effect of MitoQ on Aging-Related Biomarkers: A Systematic Review and Meta-Analysis

Faculty of Medical & Health Sciences, Discipline of Nutrition, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence should be addressed to Andrea J. Braakhuis; zn.ca.dnalkcua@siuhkaarb.a

Received 21 February 2018; Revised 24 April 2018; Accepted 3 May 2018; Published 12 July 2018

Academic Editor: Ilaria Peluso

Copyright © 2018 Andrea J. Braakhuis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Guillaumet-Adkins, Y. Yañez, M. D. Peris-Diaz, I. Calabria, C. Palanca-Ballester, and J. Sandoval, “Epigenetics and oxidative stress in aging,” Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 9175806, 8 pages, 2017. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Balaban, S. Nemoto, and T. Finkel, “Mitochondria, oxidants, and aging,” Cell, vol. 120, no. 4, pp. 483–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Cui, Y. Kong, and H. Zhang, “Oxidative stress, mitochondrial dysfunction, and aging,” Journal of Signal Transduction, vol. 2012, Article ID 646354, 13 pages, 2012. View at Publisher · View at Google Scholar
  4. S. Knasmüller, A. Nersesyan, M. Misík et al., “Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview,” The British Journal of Nutrition, vol. 99, no. E-S1, pp. ES3–ES52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. S. Tonin, L. M. Steimbach, A. Wiens, C. M. Perlin, and R. Pontarolo, “Impact of natural juice consumption on plasma antioxidant status: a systematic review and meta-analysis,” Molecules, vol. 20, no. 12, pp. 22146–22156, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. A. I. Tarasov, E. J. Griffiths, and G. A. Rutter, “Regulation of ATP production by mitochondrial Ca2+,” Cell Calcium, vol. 52, no. 1, pp. 28–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” The Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Long, X. Wang, H. Gao et al., “Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria,” Life Sciences, vol. 79, no. 15, pp. 1466–1472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Souza, G. Peluffo, and R. Radi, “Protein tyrosine nitration—functional alteration or just a biomarker?” Free Radical Biology & Medicine, vol. 45, no. 4, pp. 357–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Dalle-Donne, D. Giustarini, R. Colombo, R. Rossi, and A. Milzani, “Protein carbonylation in human diseases,” Trends in Molecular Medicine, vol. 9, no. 4, pp. 169–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. G. Wolken and E. A. Arriaga, “Simultaneous measurement of individual mitochondrial membrane potential and electrophoretic mobility by capillary electrophoresis,” Analytical Chemistry, vol. 86, no. 9, pp. 4217–4226, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. V. N. Gladyshev, “The free radical theory of aging is dead. Long live the damage theory!,” Antioxidants & Redox Signaling, vol. 20, no. 4, pp. 727–731, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. Ostojic, “Mitochondria-targeted nutraceuticals in sports medicine: a new perspective,” Research in Sports Medicine, vol. 25, no. 1, pp. 91–100, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Lowes, N. R. Webster, M. P. Murphy, and H. F. Galley, “Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis,” British Journal of Anaesthesia, vol. 110, no. 3, pp. 472–480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. H. M. Vesterinen, E. S. Sena, K. J. Egan et al., “Meta-analysis of data from animal studies: a practical guide,” Journal of Neuroscience Methods, vol. 221, pp. 92–102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Gioscia-Ryan, T. J. LaRocca, A. L. Sindler, M. C. Zigler, M. P. Murphy, and D. R. Seals, “Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice,” The Journal of Physiology, vol. 592, no. 12, pp. 2549–2561, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. G. S. Supinski, M. P. Murphy, and L. A. Callahan, “MitoQ administration prevents endotoxin-induced cardiac dysfunction,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 297, no. 4, pp. R1095–R1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Mercer, E. Yu, N. Figg et al., “The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice,” Free Radical Biology & Medicine, vol. 52, no. 5, pp. 841–849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Rodriguez-Cuenca, H. M. Cochemé, A. Logan et al., “Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice,” Free Radical Biology & Medicine, vol. 48, no. 1, pp. 161–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. K. Sakellariou, T. Pearson, A. P. Lightfoot et al., “Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle,” The FASEB Journal, vol. 30, no. 11, pp. 3771–3785, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. McManus, M. P. Murphy, and J. L. Franklin, “The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease,” Journal of Neuroscience, vol. 31, no. 44, pp. 15703–15715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Parajuli, L. H. Campbell, A. Marine, K. G. M. Brockbank, and L. A. MacMillan-Crow, “MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys,” PLoS One, vol. 7, no. 11, article e48590, 2012. View at Publisher · View at Google Scholar
  23. A. K. Maiti, N. C. Saha, S. S. More, A. K. Panigrahi, and G. Paul, “Neuroprotective efficacy of mitochondrial antioxidant MitoQ in suppressing peroxynitrite-mediated mitochondrial dysfunction inflicted by lead toxicity in the rat brain,” Neurotoxicity Research, vol. 31, no. 3, pp. 358–372, 2017. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Miquel, A. Cassina, L. Martínez-Palma et al., “Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis,” Free Radical Biology & Medicine, vol. 70, pp. 204–213, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. L. F. Ng, J. Gruber, I. K. Cheah et al., “The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease,” Free Radical Biology & Medicine, vol. 71, pp. 390–401, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. B. K. Chacko, A. Srivastava, M. S. Johnson et al., “Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis,” Hepatology, vol. 54, no. 1, pp. 153–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Lowes, B. M. V. Thottakam, N. R. Webster, M. P. Murphy, and H. F. Galley, “The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide–peptidoglycan model of sepsis,” Free Radical Biology & Medicine, vol. 45, no. 11, pp. 1559–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Dare, E. A. Bolton, G. J. Pettigrew, J. A. Bradley, K. Saeb-Parsy, and M. P. Murphy, “Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ,” Redox Biology, vol. 5, pp. 163–168, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. R. D. Powell, J. H. Swet, K. L. Kennedy et al., “MitoQ modulates oxidative stress and decreases inflammation following hemorrhage,” Journal of Trauma and Acute Care Surgery, vol. 78, no. 3, pp. 573–579, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Feillet-Coudray, G. Fouret, R. Ebabe Elle et al., “The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than apocynin or allopurinol,” Free Radical Research, vol. 48, no. 10, pp. 1232–1246, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Coudray, G. Fouret, K. Lambert et al., “A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats,” British Journal of Nutrition, vol. 115, no. 7, pp. 1155–1166, 2016. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Y. Wani, S. Gudup, A. Sunkaria et al., “Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain,” Neuropharmacology, vol. 61, no. 8, pp. 1193–1201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. D. Shill, W. M. Southern, T. B. Willingham, K. A. Lansford, K. K. McCully, and N. T. Jenkins, “Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake,” The Journal of Physiology, vol. 594, no. 23, pp. 7005–7014, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Mao, M. Manczak, U. P. Shirendeb, and P. H. Reddy, “MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1832, no. 12, pp. 2322–2331, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. C. P. Ojano-Dirain, P. J. Antonelli, and C. G. Le Prell, “Mitochondria-targeted antioxidant MitoQ reduces gentamicin-induced ototoxicity,” Otology & Neurotology, vol. 35, no. 3, pp. 533–539, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Fouret, E. Tolika, J. Lecomte et al., “The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1847, no. 10, pp. 1025–1035, 2015. View at Publisher · View at Google Scholar · View at Scopus
  37. G. F. Kelso, C. M. Porteous, G. Hughes et al., “Prevention of mitochondrial oxidative damage using targeted antioxidants,” Annals of the New York Academy of Sciences, vol. 959, no. 1, pp. 263–274, 2002. View at Publisher · View at Google Scholar
  38. L. Xiao, X. Xu, F. Zhang et al., “The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1,” Redox Biology, vol. 11, pp. 297–311, 2017. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Curtis, G. N. Landis, D. Folk et al., “Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes,” Genome Biology, vol. 8, no. 12, article R262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. A. Brown, S. P. Didion, J. J. Andresen, and F. M. Faraci, “Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 9, pp. 1941–1946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. S. Berlett and E. R. Stadtman, “Protein oxidation in aging, disease, and oxidative stress,” Journal of Biological Chemistry, vol. 272, no. 33, pp. 20313–20316, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. M. P. Murphy, “Targeting lipophilic cations to mitochondria,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1777, no. 7-8, pp. 1028–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Pond and T. N. Tozer, “First-pass elimination basic concepts and clinical consequences,” Clinical Pharmacokinetics, vol. 9, no. 1, pp. 1–25, 1984. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. J. Smith and M. P. Murphy, “Animal and human studies with the mitochondria-targeted antioxidant MitoQ,” Annals of the New York Academy of Sciences, vol. 1201, no. 1, pp. 96–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Liu and L.-n. Wang, “Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone,” CNS Drugs, vol. 28, no. 1, pp. 63–68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. J. Smith, C. M. Porteous, A. M. Gane, and M. P. Murphy, “Delivery of bioactive molecules to mitochondria in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5407–5412, 2003. View at Publisher · View at Google Scholar · View at Scopus