Oxidative Medicine and Cellular Longevity

Oxidative Medicine and Cellular Longevity / 2019 / Article
Special Issue

Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance

View this Special Issue

Review Article | Open Access

Volume 2019 |Article ID 7346492 | 9 pages | https://doi.org/10.1155/2019/7346492

MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance

Academic Editor: Alexandros Georgakilas
Received08 Apr 2019
Revised10 Jun 2019
Accepted17 Jun 2019
Published25 Jun 2019

Abstract

Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells, stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic reprogramming is the result of a complex network of mechanisms that, through the activation of oncogenes (i.e., MYC, HIF1, and PI3K) or the downregulation of tumor suppressors (i.e., TP53), induces an increased expression of glucose and/or glutamine transporters and of glycolytic enzymes. Therefore, in order to overcome chemoresistance, it is necessary to develop combined therapies which are able to selectively and simultaneously act on the multiple molecular targets responsible for this adaptation. This review is focused on highlighting the role of MYC in modulating the epigenetic redox changes which are crucial in the acquisition of therapy resistance.

1. Cancer Metabolic Reprogramming

Metabolic reprogramming is an early event in the carcinogenic process, and it is involved in the development of malignancy and the acquisition of most cancer hallmarks [1]. The first metabolic phenotype observed in cancer cells was described by Otto Warburg, a German biochemist, as a shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis to generate lactate and ATP even in the presence of O2 (i.e., Warburg effect) [2]. Since the Warburg effect is also found in tumor cells with intact and functional mitochondria, it is reasonable to assume that it could represent a strategy adopted by cancer cells, not only to cope with the greater energy demands but also to reduce oxidative stress, preserving cells from oxidative death [3]. In this regard, reactive oxygen species (ROS), maintained at “physiological” levels, have been demonstrated to activate redox signaling pathways involved in cell proliferation and survival [4, 5].

Over the past decade, numerous studies have supported the hypothesis that the Warburg effect can be explained by the alterations in multiple signaling pathways resulting from mutations of oncogenes and tumor suppressor genes [6, 7]. Indeed, tumor metabolic reprogramming involves the activation of key metabolic pathways such as glycolysis, the pentose phosphate pathway, and glutaminolysis [8].

In this regard, it has been demonstrated that the glycolytic metabolic switch is due to a marked slowing down of the conversion of phosphoenolpyruvate into pyruvate, a reaction catalyzed by pyruvate kinase (PKM) [9]. Furthermore, in cancer cells, it has been observed that the presence of the low-activity dimeric form of PKM2 promotes the conversion of pyruvate to lactate [10] and that the increased levels of lactic acid detected in cancer patients are related to rapid tumor growth and high levels of metastases [11]. Moreover, considering that most chemotherapeutic agents are weak bases, the presence of lactic acid, generating acidity, induces the ionization of the drugs which, in their modified chemical structure, are not able to enter the tumor cells, thus facilitating the onset of chemoresistance [12, 13].

PKM2, which makes cells less susceptible to oxidative stress and enhances NADPH production [14, 15], has been found to have a role in chemoresistance. In fact, a recent study showed that this kinase promotes gemcitabine resistance on one hand by inhibiting the transcriptional activation of p53 and the p38-mediated signaling pathway and on the other by increasing the expression of the antiapoptotic protein bcl-xl [16]. In addition, it has been reported that many cancer cells in order to satisfy their bioenergetic and metabolic needs depend on glutamine which is the main source of tricarboxylic acid (TCA) cycle precursors (Figure 1). For example, at the mitochondrial level, glutamine is converted to glutamate by glutaminase (GLS). In turn, glutamate can be converted to α-ketoglutarate (KG) by glutamate dehydrogenase (GDH) or transaminase, resulting in sustaining the TCA cycle. In addition, glutamate can serve as a precursor not only of nonessential amino acids such as aspartate, alanine, proline, and arginine but also of the most important intracellular antioxidant, glutathione (GSH), which is a tripeptide consisting of glutamate, cysteine, and glycine. In addition, malate, which is derived from glutamine, can be converted into pyruvate, leading to NADPH formation [17]. Therefore, the production of NADPH and GSH, derived from glutamine, allows cancer cells to reduce oxidative stress levels associated with mitochondrial respiration and rapid cell proliferation (Figure 1).

In this regard, our recent studies on human neuroblastoma (NB) cells [18], as well as other studies carried out on brain tumor samples [19] and ovarian cancer cells [20], have all demonstrated that the acquisition of chemoresistance is associated with high levels of GSH that enable cancer cells to counteract the prooxidant action of many chemotherapeutic agents [4, 21, 22].

It is noteworthy that the dependency of tumors on specific metabolic substrates, such as glucose or glutamine, is determined by alterations in oncogenes and oncosuppressor genes which are responsible for the tumor metabolic phenotype, while also supporting tumorigenesis. Among oncogenes, MYC has been found to have a pivotal role in the metabolic reprogramming of tumor cells by enhancing glucose uptake and glycolysis, lactate production and export, glutamine uptake and glutaminolysis, mitochondrial biogenesis, and oxidative phosphorylation [1].

2. Role of MYC in Cancer Metabolic Reprogramming and Adaptation to Therapy

MYC is a family of protooncogenes (i.e., c-MYC, L-MYC and N-MYC) which encode transcription factors that have roles in both normal and cancer cell physiologies. MYC requires dimerization with the protein MAX for DNA binding and for the assembly of transcriptional machinery. MAX can also interact with Mxd members which are transcriptional repressors and act in antagonism with MYC/MAX complexes. In addition, Mxd members can also bind to Mlx proteins that can interact with transcription activators of the Mondo family [23]. The MondoA/Mlx complex, located in the cytosol, translocates to the nucleus where, in response to an increase in extracellular glucose levels, it stimulates the expression of the thioredoxin-interacting protein (TXNIP) which suppresses the glucose uptake by limiting the expression of glucose transporters (GLUT) in the membrane [24, 25].

MYC is strongly involved in regulating cell metabolism and facilitates glycolysis by inducing the activation of genes encoding for glycolytic enzymes and GLUT (Figure 1) [26]. It is also able to promote mitochondrial biogenesis and function, thus increasing both oxygen consumption and ATP production [2729].

Furthermore, it has been found that MYC upregulates the expression of glutamine transporters, facilitating glutaminolysis [30, 31], which is also stimulated by repressing microRNA-23a/b transcription leading to GLS1 overexpression [32]. As reported above, GLS converts glutamine to glutamate [32] which either enters the TCA cycle for the production of ATP or serves as a substrate for GSH synthesis [30]. In this regard, it has been reported that S6K1, a downstream effector of mTORC1, facilitates the translation of MYC, further contributing to the increase of GLS and GDH [33, 34]. In addition, it has been shown that mTORC1 expression, in response to stress conditions, is inhibited by FOXO transcription factors [35] and an increased expression of FOXO3a is able to antagonize the MYC binding to promoters, reducing the mitochondrial mass, oxygen consumption, and ROS production [36].

Regarding the enhancement of the mitochondrial function, it has been found that MYC can activate the PPARγ coactivator-1α (PGC-1α) and the mitochondrial transcription factor A (TFAM), mediators of mitochondrial biogenesis and mitochondrial gene expression, respectively [28, 37]. Interestingly, although the role played by MYC/PGC-1α axis is controversial [38], several reports have demonstrated that PGC1-α is involved in chemoresistance [39] and the inhibition of the PGC-1α pathway has been found to activate glycolysis [40] and to sensitize melanoma to oxidative damage [41].

Therefore, as reported above, the MYC-overexpressing tumors depend on glutamine [30, 31], and it has been demonstrated that glutamine depletion leads to the reduction of GSH levels and consequently triggers apoptosis. In fact, buthionine sulfoximine- (BSO-) induced depletion of GSH was able to induce apoptosis of N-MYC-amplified NB cells through a ROS-mediated activation of PKCδ-dependent pathways (Figure 2) [5, 42, 43]. Accordingly, PKCδ overexpression sensitized NB cells to the proapoptotic effects of BSO and of etoposide [18, 4446].

Clinical studies carried out on NB patients have demonstrated that N-MYC amplification correlates to a reduction in the survival rate of those patients undergoing a multidrug therapy protocol consisting of etoposide, vincristine, carboplatin, adriamycin, and cyclophosphamide [47].

3. Molecular Mechanisms of MYC-Dependent Metabolic Changes

In N-MYC-amplified NB tumors, Akt has been found to be hyperactivated [48] and Akt activation has been demonstrated to be strongly involved in etoposide resistance [46, 4951], as well as being related to the expression of CD133, a marker of staminality associated with the most aggressive cancer phenotype [52]. Accordingly, it has been shown that Akt inhibition sensitizes NB cells to the cytotoxic action of etoposide [53], doxorubicin, vincristine, and cisplatin [52]. In addition, under conditions of nutrient deficiency, the reduced activity of Akt decreases the amount of MDM2, the p53 endogenous inhibitor, resulting in an increase in p53 levels [54]. In fact, it has been found that the activation of p53 limits glycolysis and promotes OXPHOS in cancer cells while the loss of function of mutated p53 contributes to the development of the Warburg effect [55, 56]. Therefore, p53, in repressing PGC-1α, which is involved in mitochondrial biogenesis, and modulating other genes implicated in autophagy, in glucose metabolism, and also in the pentose-phosphate pathway [5766], can play a role as a regulator of tumor cell metabolism and chemoresistance.

Interestingly, our recent studies have shown that chronic treatment of N-MYC-amplified NB cells with etoposide does not modify the homozygous p53 mutation (A161T), previously found in etoposide-sensitive NB cells, and therefore, in this context, p53 is responsible neither for OXPHOS activation nor for the metabolic adaptation of etoposide-resistant NB cells [67].

Moreover, several studies have demonstrated that the metabolic reprogramming might be the result of the “molecular interplay” between N-MYC and hypoxia-inducible factors (HIFs) [68]. HIF1 and HIF2 provide transcriptional homeostatic responses to limited oxygen levels in both physiological and pathological conditions. Although physiological HIF1 can inhibit the activity of normal MYC, the altered expression of the oncogenic MYC collaborates with HIF to confer the propensity to cancer cells to convert glucose to lactate, even in the presence of adequate O2 levels [6972]. In fact, at normal MYC levels, it has been observed that HIF1α can compete for MAX, displacing MYC, while, at higher MYC levels, the formation of MYC-MAX heterodimers is maintained through mass action. Similar to MYC, HIF1 activates all genes involved in glycolysis, but unlike MYC, HIF1 actively inhibits mitochondrial respiration by promoting mitochondrial autophagy [73, 74] and preventing mitochondrial biogenesis [29]. In this context, it has been reported that HIF1 induces the expression of pyruvate dehydrogenase kinase (PDK1) which phosphorylates and inactivates pyruvate dehydrogenase, a mitochondrial enzyme catalyzing the conversion of pyruvate to acetyl CoA [75, 76]. Moreover, it has been found that MYC, when overexpressed in human tumors, cooperates with HIF1 to induce PDK1 and hexokinase 2 (HK2) expression, altering cellular metabolism in favor of glycolysis with an increased production of lactate [70, 75]. HIF1 and MYC independently activate GLUT1 and lactate dehydrogenase A (LDHA), resulting in an increased glucose influx and higher glycolytic rates [75].

Interestingly, HK2, which plays a key role for the Warburg effect in cancer, binds competitively to the voltage-dependent anion channel (VDAC), in the outer mitochondrial membrane, preventing its union with proapoptotic Bax and thereby avoiding apoptosis [77].

Apoptosis and senescence represent two tumor-suppressive mechanisms which can be modulated by MYC and RAS oncogenes. In fact, RAS inhibits MYC-induced apoptosis via PI3K activity and MYC suppresses RAS-induced senescence via CdK2, a cyclin-dependent kinase which phosphorylates MYC at Ser62 residue [78]. Accordingly, CdK2 inhibition has been shown to slow down the growth of MYCN-amplified neuroblastoma cells [79] and of other MYC-driven tumors [80].

Many chemotherapeutic drugs exert their cytotoxic effects on cancer cells by reactivating apoptosis and/or senescence [81]. In this context, it has been hypothesized that therapy-induced senescence (TIS) could be useful in the treatment of tumors with an impairment of the apoptotic pathways.

Interestingly, it is relevant to know that the presence of TIS cells can stimulate immunosurveillance and also induce chemoresistance [82, 83]. In fact, TIS cells have features of stemness that is regulated by the Wnt-dependent pathways [8486] and undergo a metabolic reprogramming characterized by an increase in the glycolytic activity [2, 3] and an impairment of proteasome activity and autophagy [87]. In this context, the treatment of oncologic patients with anthracyclines and alkylating agents has been shown to induce cellular senescence and the secretion of cytokines, chemokines, growth factors, and proteases that can contribute to the side effects of chemotherapy [82, 88].

Recently, it has been reported that downregulation of p21, a cell cycle inhibitor, leads to MYC upregulation which represses the expression of CD47 receptor generating a subpopulation of cells that escape senescence [89]. However, further studies are necessary to determine if senescence is a general adaptive pathway to chemotherapy and if this response concerns only a specific subpopulation of cancer cells.

4. Inhibition of MYC Effectors as a Potential Strategy to Block Cancer Metabolic Reprogramming

Although MYC is considered the “most-wanted” target for anticancer therapy [90], the targeting of this oncogene has not yet obtained any positive outcomes. In fact, the inhibition of MYC can interfere with its physiological functions and therefore an alternative approach inhibiting MYC effectors could be more useful. More specifically, given that MYC drives the glucose and glutamine metabolism of cancer cells, the use of small molecules, able to inhibit enzymes involved in glycolysis and glutaminolysis, might be effective in slowing down tumor cell proliferation. Among them, several drugs targeting the MYC effectors are currently being tested in clinical practice [9197] (Table 1).


DrugTargetEffect on MYCCancer typePhase trialsNCT

SilibynGLUTReduction [91]Prostate cancerII00487721

GossypolLactate dehydrogenase (LDH)Reduction [92]Small-cell lung carcinomaII00773955
Prostate cancerII00666666
Esophageal/gastroesophageal cancerI/II00561197
GlioblastomaI00390403
II00540722

DichloroacetatePyruvate dehydrogenase (PDH)Reduction [93]Breast cancer and non-small-cell lung carcinomaII01029925
Head and neck cancerI01163487
Brain cancerII00540176

DeoxyglucoseHexokinase IIReduction [94]Prostate cancerI/II00633087
Lung cancer and breast cancerI00096707

ApigeninPyruvate kinase M (PKM)Reduction [95]Breast cancer03139227

DiclofenacGLUT1 and LDHReduction [96]Basal cell carcinomaII01358045

CB-839Glutaminase1 (GLS1)Reduction [97]LeukemiaI02071927
Colorectal cancerI/II02861300
Hematological tumorsI02071888
MelanomaI/II02771626
Triple negative breast cancer and solid tumorsI02071862

Interestingly, a promising approach could be to indirectly modulate MYC through the “synthetic lethality” [90], and in this regard, the development of MK-3475 (pembrolizumab or keytruda) might offer new therapeutic opportunities. In fact, this latter compound is an inhibitor of the programmed death-1 (PD-1) protein and MYC modulates the expression of its ligand (PD-L1) [98], which, when overexpressed, stimulates glucose metabolism [99] by increasing GLUT1 expression [100]. MK-3475 has been, and is currently, the subject of over 900 clinical trials, and two of these have even reached Phase 4 (NCT03715205; NCT03134456). In addition, in Phase 3 studies, it should be noted that this compound per se is efficacious in treating recurrent or metastatic head-and-neck squamous cell carcinoma (NCT02252042) [101], advanced urothelial carcinoma (NCT02256436) [102], non-small-cell lung cancer (NCT01905657) [103], and melanoma (NCT02362594) [104].

5. Conclusions

Tumor metabolic reprogramming is a direct result of the reengineering of intracellular signaling pathways that are altered by activated oncogenes or downregulated oncosuppressors and by epigenetic changes, conferring a proliferative advantage to cancer cells.

Indeed, tumors may prefer either a glycolytic or an oxidative metabolism, depending on the activation of oncogenes or repression of oncosuppressors but also on the tumor microenvironment. Therefore, it is conceivable that in the tumor niche there is a strong “metabolic competition” due to high nutritional requirements and also an intense “molecular interplay” able to maintain an efficient metabolism. The balance between these factors could paradoxically guarantee the development and the survival of cancer even under therapy-induced stress conditions. Consequently, therapies that block glucose metabolism might be more effective towards tumors with high glycolytic rates, while they might develop therapy resistance in tumors whose metabolism depends on oxidative phosphorylation [105].

Therefore, anticancer therapy must take into account that most chemotherapeutic drugs are prooxidant agents and are able to induce a metabolic reprogramming that alters the redox homeostasis of cancer cells activating signaling pathways responsible for cell survival.

Considering the crucial role of MYC in driving the metabolic reprogramming of cancer which has been shown to be strictly related to drug resistance, several studies have been carried out in order to focus MYC-dependent metabolic pathways. Even though the efforts are multiple, to date the applicability of MYC inhibitors is still a utopia. However, the use of small molecules, able to inhibit MYC-related enzymes involved in glycolysis and glutaminolysis, might result effective in slowing down tumor cell proliferation and counteracting chemoresistance.

However, the characterization of the metabolic reprogramming of tumors and its connection with oncogenic signaling is a promising strategy to identify novel molecular approaches in anticancer treatment.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This work was supported by grants from Genoa University. We would like to thank Mr. Giuseppe Catalano (DIMES, University of Genoa) for his technical assistance and Ms. Suzanne Patten for the language editing.

References

  1. M. Tarrado-Castellarnau, P. de Atauri, and M. Cascante, “Oncogenic regulation of tumor metabolic reprogramming,” Oncotarget, vol. 7, no. 38, pp. 62726–62753, 2016. View at: Publisher Site | Google Scholar
  2. O. Warburg, F. Wind, and N. Negelein, “The metabolism of tumors in the body,” Journal of General Physiology, vol. 8, no. 6, pp. 519–530, 1927. View at: Publisher Site | Google Scholar
  3. M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at: Publisher Site | Google Scholar
  4. B. Marengo, M. Nitti, A. L. Furfaro et al., “Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 6235641, 16 pages, 2016. View at: Publisher Site | Google Scholar
  5. B. Marengo, L. Raffaghello, V. Pistoia et al., “Reactive oxygen species: biological stimuli of neuroblastoma cell response,” Cancer Letters, vol. 228, no. 1-2, pp. 111–116, 2005. View at: Publisher Site | Google Scholar
  6. J. P. Bayley and P. Devilee, “The Warburg effect in 2012,” Current Opinion in Oncology, vol. 24, no. 1, pp. 62–67, 2012. View at: Publisher Site | Google Scholar
  7. M. V. Liberti and J. W. Locasale, “The Warburg effect: how does it benefit cancer cells?” Trends in Biochemical Sciences, vol. 41, no. 3, pp. 211–218, 2016. View at: Publisher Site | Google Scholar
  8. P. S. Ward and C. B. Thompson, “Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate,” Cancer Cell, vol. 21, no. 3, pp. 297–308, 2012. View at: Publisher Site | Google Scholar
  9. H. R. Christofk, M. G. Vander Heiden, M. H. Harris et al., “The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth,” Nature, vol. 452, no. 7184, pp. 230–233, 2008. View at: Publisher Site | Google Scholar
  10. M. Tamada, M. Suematsu, and H. Saya, “Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells,” Clinical Cancer Research, vol. 18, no. 20, pp. 5554–5561, 2012. View at: Publisher Site | Google Scholar
  11. S. Walenta and W. F. Mueller-Klieser, “Lactate: mirror and motor of tumor malignancy,” Seminars in Radiation Oncology, vol. 14, no. 3, pp. 267–274, 2004. View at: Publisher Site | Google Scholar
  12. R. Amorim, C. Pinheiro, V. Miranda-Gonçalves et al., “Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells,” Cancer Letters, vol. 365, no. 1, pp. 68–78, 2015. View at: Publisher Site | Google Scholar
  13. N. Draoui, O. Schicke, E. Seront et al., “Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux,” Molecular Cancer Therapeutics, vol. 13, no. 6, pp. 1410–1418, 2014. View at: Publisher Site | Google Scholar
  14. D. Anastasiou, G. Poulogiannis, J. M. Asara et al., “Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses,” Science, vol. 334, no. 6060, pp. 1278–1283, 2011. View at: Publisher Site | Google Scholar
  15. R. B. Hamanaka and N. S. Chandel, “Warburg effect and redox balance,” Science, vol. 334, no. 6060, pp. 1219-1220, 2011. View at: Publisher Site | Google Scholar
  16. D. J. Kim, Y. S. Park, M. G. Kang et al., “Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells,” Experimental Cell Research, vol. 336, no. 1, pp. 119–129, 2015. View at: Publisher Site | Google Scholar
  17. R. J. DeBerardinis, A. Mancuso, E. Daikhin et al., “Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19345–19350, 2007. View at: Publisher Site | Google Scholar
  18. R. Colla, A. Izzotti, C. de Ciucis et al., “Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma,” Oncotarget, vol. 7, no. 43, pp. 70715–70737, 2016. View at: Publisher Site | Google Scholar
  19. D. S. Backos, C. C. Franklin, and P. Reigan, “The role of glutathione in brain tumor drug resistance,” Biochemical Pharmacology, vol. 83, no. 8, pp. 1005–1012, 2012. View at: Publisher Site | Google Scholar
  20. E. Wang, S. Bhattacharyya, A. Szabolcs et al., “Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer,” PLoS One, vol. 6, no. 3, article e17918, 2011. View at: Publisher Site | Google Scholar
  21. N. Traverso, R. Ricciarelli, M. Nitti et al., “Role of glutathione in cancer progression and chemoresistance,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 972913, 10 pages, 2013. View at: Publisher Site | Google Scholar
  22. J. Cen, L. Zhang, F. Liu, F. Zhang, and B. S. Ji, “Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 7053451, 15 pages, 2016. View at: Publisher Site | Google Scholar
  23. B. M. Iritani, J. Delrow, C. Grandori et al., “Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1,” The EMBO Journal, vol. 21, no. 18, pp. 4820–4830, 2002. View at: Publisher Site | Google Scholar
  24. B. R. Wilde and D. E. Ayer, “Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis,” British Journal of Cancer, vol. 113, no. 11, pp. 1529–1533, 2015. View at: Publisher Site | Google Scholar
  25. N. Wu, B. Zheng, A. Shaywitz et al., “AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1,” Molecular Cell, vol. 49, no. 6, pp. 1167–1175, 2013. View at: Publisher Site | Google Scholar
  26. R. C. Osthus, H. Shim, S. Kim et al., “Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc,” Journal of Biological Chemistry, vol. 275, no. 29, pp. 21797–21800, 2000. View at: Publisher Site | Google Scholar
  27. T. Wahlström and M. Arsenian Henriksson, “Impact of MYC in regulation of tumor cell metabolism,” Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol. 1849, no. 5, pp. 563–569, 2015. View at: Publisher Site | Google Scholar
  28. F. Li, Y. Wang, K. I. Zeller et al., “Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis,” Molecular and Cellular Biology, vol. 25, no. 14, pp. 6225–6234, 2005. View at: Publisher Site | Google Scholar
  29. H. Zhang, P. Gao, R. Fukuda et al., “HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity,” Cancer Cell, vol. 11, no. 5, pp. 407–420, 2007. View at: Publisher Site | Google Scholar
  30. D. R. Wise, R. J. DeBerardinis, A. Mancuso et al., “Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 48, pp. 18782–18787, 2008. View at: Publisher Site | Google Scholar
  31. M. O. Yuneva, T. W. M. Fan, T. D. Allen et al., “The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type,” Cell Metabolism, vol. 15, no. 2, pp. 157–170, 2012. View at: Publisher Site | Google Scholar
  32. P. Gao, I. Tchernyshyov, T.-C. Chang et al., “C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism,” Nature, vol. 458, no. 7239, pp. 762–765, 2009. View at: Publisher Site | Google Scholar
  33. A. Csibi, G. Lee, S.-O. Yoon et al., “The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation,” Current Biology, vol. 24, no. 19, pp. 2274–2280, 2014. View at: Publisher Site | Google Scholar
  34. A. Csibi, S. M. Fendt, C. Li et al., “The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4,” Cell, vol. 153, no. 4, pp. 840–854, 2013. View at: Publisher Site | Google Scholar
  35. A. Lin, J. Yao, L. Zhuang et al., “The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress,” Oncogene, vol. 33, no. 24, pp. 3183–3194, 2014. View at: Publisher Site | Google Scholar
  36. K. S. Jensen, T. Binderup, K. T. Jensen et al., “FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function,” The EMBO Journal, vol. 30, no. 22, pp. 4554–4570, 2011. View at: Publisher Site | Google Scholar
  37. D. P. Kelly and R. C. Scarpulla, “Transcriptional regulatory circuits controlling mitochondrial biogenesis and function,” Genes & Development, vol. 18, no. 4, pp. 357–368, 2004. View at: Publisher Site | Google Scholar
  38. P. Sancho, E. Burgos-Ramos, A. Tavera et al., “MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells,” Cell Metabolism, vol. 22, no. 4, pp. 590–605, 2015. View at: Publisher Site | Google Scholar
  39. V. S. LeBleu, J. T. O’Connell, K. N. Gonzalez Herrera et al., “PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis,” Nature Cell Biology, vol. 16, no. 10, pp. 992–1003, 2014. View at: Publisher Site | Google Scholar
  40. J. H. Lim, C. Luo, F. Vazquez, and P. Puigserver, “Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization,” Cancer Research, vol. 74, no. 13, pp. 3535–3545, 2014. View at: Publisher Site | Google Scholar
  41. F. Vazquez, J. H. Lim, H. Chim et al., “PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress,” Cancer Cell, vol. 23, no. 3, pp. 287–301, 2013. View at: Publisher Site | Google Scholar
  42. B. Marengo, C. de Ciucis, D. Verzola et al., “Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma,” Free Radical Biology & Medicine, vol. 44, no. 3, pp. 474–482, 2008. View at: Publisher Site | Google Scholar
  43. B. Marengo, C. De Ciucis, R. Ricciarelli, M. A. Pronzato, U. M. Marinari, and C. Domenicotti, “Protein kinase C: an attractive target for cancer therapy,” Cancers, vol. 3, no. 1, pp. 531–567, 2011. View at: Publisher Site | Google Scholar
  44. B. Marengo, C. de Ciucis, R. Ricciarelli et al., “PKCδ sensitizes neuroblastoma cells to L-buthionine-sulfoximine and etoposide inducing reactive oxygen species overproduction and DNA damage,” PLoS One, vol. 6, no. 2, article e14661, 2011. View at: Publisher Site | Google Scholar
  45. C. Domenicotti, B. Marengo, M. Nitti et al., “A novel role of protein kinase C-delta in cell signaling triggered by glutathione depletion,” Biochemical Pharmacology, vol. 66, no. 8, pp. 1521–1526, 2003. View at: Publisher Site | Google Scholar
  46. B. Marengo, C. G. de Ciucis, R. Ricciarelli et al., “p38MAPK inhibition: a new combined approach to reduce neuroblastoma resistance under etoposide treatment,” Cell Death & Disease, vol. 4, no. 4, article e589, 2013. View at: Publisher Site | Google Scholar
  47. Z. Y. Zhong, B. J. Shi, H. Zhou, and W. B. Wang, “CD133 expression and MYCN amplification induce chemoresistance and reduce average survival time in pediatric neuroblastoma,” Journal of International Medical Research, vol. 46, no. 3, pp. 1209–1220, 2018. View at: Publisher Site | Google Scholar
  48. A. Nakagawara, M. Arima-Nakagawara, N. J. Scavarda, C. G. Azar, A. B. Cantor, and G. M. Brodeur, “Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma,” The New England Journal of Medicine, vol. 328, no. 12, pp. 847–854, 1993. View at: Publisher Site | Google Scholar
  49. S. Scala, K. Wosikowski, P. Giannakakou et al., “Brain-derived neurotrophic factor protects neuroblastoma cells from vinblastine toxicity,” Cancer Research, vol. 56, no. 16, pp. 3737–3742, 1996. View at: Google Scholar
  50. J. Jaboin, C. J. Kim, D. R. Kaplan, and C. J. Thiele, “Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3’-kinase pathway,” Cancer Research, vol. 62, no. 22, pp. 6756–6763, 2002. View at: Google Scholar
  51. Z. Li, J. Jaboin, P. A. Dennis, and C. J. Thiele, “Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death,” Cancer Research, vol. 65, no. 6, pp. 2070–2075, 2005. View at: Publisher Site | Google Scholar
  52. H. Sartelet, T. Imbriglio, C. Nyalendo et al., “CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway,” Histopathology, vol. 60, no. 7, pp. 1144–1155, 2012. View at: Publisher Site | Google Scholar
  53. Z. Li, D. Y. Oh, K. Nakamura, and C. J. Thiele, “Perifosine-induced inhibition of Akt attenuates brain-derived neurotrophic factor/TrkB-induced chemoresistance in neuroblastoma in vivo,” Cancer, vol. 117, no. 23, pp. 5412–5422, 2011. View at: Publisher Site | Google Scholar
  54. B. P. Zhou, Y. Liao, W. Xia, Y. Zou, B. Spohn, and M. C. Hung, “HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation,” Nature Cell Biology, vol. 3, no. 11, pp. 973–982, 2001. View at: Publisher Site | Google Scholar
  55. R. A. Cairns, I. S. Harris, and T. W. Mak, “Regulation of cancer cell metabolism,” Nature Reviews Cancer, vol. 11, no. 2, pp. 85–95, 2011. View at: Publisher Site | Google Scholar
  56. A. J. Levine and A. M. Puzio-Kuter, “The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes,” Science, vol. 330, no. 6009, pp. 1340–1344, 2010. View at: Publisher Site | Google Scholar
  57. D. Crighton, S. Wilkinson, J. O'Prey et al., “DRAM, a p53-induced modulator of autophagy, is critical for apoptosis,” Cell, vol. 126, no. 1, pp. 121–134, 2006. View at: Publisher Site | Google Scholar
  58. D. Kenzelmann Broz, S. Spano Mello, K. T. Bieging et al., “Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses,” Genes & Development, vol. 27, no. 9, pp. 1016–1031, 2013. View at: Publisher Site | Google Scholar
  59. K. H. Vousden and X. Lu, “Live or let die: the cell’s response to p53,” Nature Reviews Cancer, vol. 2, no. 8, pp. 594–604, 2002. View at: Publisher Site | Google Scholar
  60. K. H. Vousden and K. M. Ryan, “p53 and metabolism,” Nature Reviews Cancer, vol. 9, no. 10, pp. 691–700, 2009. View at: Publisher Site | Google Scholar
  61. E. White, “Autophagy and p53,” Cold Spring Harbor Perspectives in Medicine, vol. 6, no. 4, article a026120, 2016. View at: Publisher Site | Google Scholar
  62. K. Sajnani, F. Islam, R. A. Smith, V. Gopalan, and A. K. Y. Lam, “Genetic alterations in Krebs cycle and its impact on cancer pathogenesis,” Biochimie, vol. 135, pp. 164–172, 2017. View at: Publisher Site | Google Scholar
  63. W. X. Mai, L. Gosa, V. W. Daniels et al., “Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma,” Nature Medicine, vol. 23, no. 11, pp. 1342–1351, 2017. View at: Publisher Site | Google Scholar
  64. F. M. Simabuco, M. G. Morale, I. C. B. Pavan, A. P. Morelli, F. R. Silva, and R. E. Tamura, “p53 and metabolism: from mechanism to therapeutics,” Oncotarget, vol. 9, no. 34, pp. 23780–23823, 2018. View at: Publisher Site | Google Scholar
  65. M. C. De Santis, P. E. Porporato, M. Martini, and A. Morandi, “Signaling pathways regulating redox balance in cancer metabolism,” Frontiers in Oncology, vol. 8, no. 126, 2018. View at: Publisher Site | Google Scholar
  66. I. Hernández-Reséndiz, J. C. Gallardo-Pérez, A. López-Macay et al., “Mutant p53R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells,” Journal of Cellular Physiology, vol. 234, no. 5, pp. 5524–5536, 2018. View at: Publisher Site | Google Scholar
  67. B. Marengo, P. Monti, M. Miele et al., “Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation,” Scientific Reports, vol. 8, no. 1, article 13762, 2018. View at: Publisher Site | Google Scholar
  68. G. Qing, N. Skuli, P. A. Mayes et al., “Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1α,” Cancer Research, vol. 70, no. 24, pp. 10351–10361, 2010. View at: Publisher Site | Google Scholar
  69. M. Koshiji, Y. Kageyama, E. A. Pete, I. Horikawa, J. C. Barrett, and L. E. Huang, “HIF-1α induces cell cycle arrest by functionally counteracting Myc,” The EMBO Journal, vol. 23, no. 9, pp. 1949–1956, 2004. View at: Publisher Site | Google Scholar
  70. J. D. Gordan, C. B. Thompson, and M. C. Simon, “HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation,” Cancer Cell, vol. 12, no. 2, pp. 108–113, 2007. View at: Publisher Site | Google Scholar
  71. J. D. Gordan, J. A. Bertout, C. J. Hu, J. A. Diehl, and M. C. Simon, “HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity,” Cancer Cell, vol. 11, no. 4, pp. 335–347, 2007. View at: Publisher Site | Google Scholar
  72. G. Qing and M. C. Simon, “Hypoxia inducible factor-2α: a critical mediator of aggressive tumor phenotypes,” Current Opinion in Genetics & Development, vol. 19, no. 1, pp. 60–66, 2009. View at: Publisher Site | Google Scholar
  73. H. Zhang, M. Bosch-Marce, L. A. Shimoda et al., “Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10892–10903, 2008. View at: Publisher Site | Google Scholar
  74. Y. Jang, J. Han, S. J. Kim et al., “Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation,” Oncotarget, vol. 6, no. 35, pp. 38127–38138, 2015. View at: Publisher Site | Google Scholar
  75. C. V. Dang, J. W. Kim, P. Gao, and J. Yustein, “The interplay between MYC and HIF in cancer,” Nature Reviews Cancer, vol. 8, no. 1, pp. 51–56, 2008. View at: Publisher Site | Google Scholar
  76. G. L. Semenza, P. H. Roth, H. M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23757–23763, 1994. View at: Google Scholar
  77. J. G. Pastorino, N. Shulga, and J. B. Hoek, “Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7610–7618, 2002. View at: Publisher Site | Google Scholar
  78. P. Hydbring and L. G. Larsson, “Tipping the balance: Cdk2 enables Myc to suppress senescence,” Cancer Research, vol. 70, no. 17, pp. 6687–6691, 2010. View at: Publisher Site | Google Scholar
  79. J. J. Molenaar, M. E. Ebus, D. Geerts et al., “Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12968–12973, 2009. View at: Publisher Site | Google Scholar
  80. S. Campaner, M. Doni, P. Hydbring et al., “Cdk2 suppresses cellular senescence induced by the c-myc oncogene,” Nature Cell Biology, vol. 12, no. 1, pp. 54–59, 2010. View at: Publisher Site | Google Scholar
  81. B. D. Chang, E. V. Broude, M. Dokmanovic et al., “A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents,” Cancer Research, vol. 59, no. 15, pp. 3761–3767, 1999. View at: Google Scholar
  82. M. Demaria, M. N. O'Leary, J. Chang et al., “Cellular senescence promotes adverse effects of chemotherapy and cancer relapse,” Cancer Discovery, vol. 7, no. 2, pp. 165–176, 2017. View at: Publisher Site | Google Scholar
  83. J. A. Ewald, J. A. Desotelle, G. Wilding, and D. F. Jarrard, “Therapy-induced senescence in cancer,” JNCI: Journal of the National Cancer Institute, vol. 102, no. 20, pp. 1536–1546, 2010. View at: Publisher Site | Google Scholar
  84. M. Milanovic, D. N. Y. Fan, D. Belenki et al., “Senescence-associated reprogramming promotes cancer stemness,” Nature, vol. 553, no. 7686, pp. 96–100, 2018. View at: Publisher Site | Google Scholar
  85. T. Reya, A. W. Duncan, L. Ailles et al., “A role for Wnt signalling in self-renewal of haematopoietic stem cells,” Nature, vol. 423, no. 6938, pp. 409–414, 2003. View at: Publisher Site | Google Scholar
  86. Y. Wang, A. V. Krivtsov, A. U. Sinha et al., “The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML,” Science, vol. 327, no. 5973, pp. 1650–1653, 2010. View at: Publisher Site | Google Scholar
  87. S. Capasso, N. Alessio, T. Squillaro et al., “Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells,” Oncotarget, vol. 6, no. 37, pp. 39457–39468, 2015. View at: Publisher Site | Google Scholar
  88. H. K. Sanoff, A. M. Deal, J. Krishnamurthy et al., “Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer,” JNCI: Journal of the National Cancer Institute, vol. 106, no. 4, article dju057, 2014. View at: Publisher Site | Google Scholar
  89. J. Guillon, C. Petit, M. Moreau et al., “Regulation of senescence escape by TSP1 and CD47 following chemotherapy treatment,” Cell Death & Disease, vol. 10, no. 3, p. 199, 2019. View at: Publisher Site | Google Scholar
  90. J. R. Whitfield, M.-E. Beaulieu, and L. Soucek, “Strategies to inhibit Myc and their clinical applicability,” Frontiers in Cell and Developmental Biology, vol. 5, no. 10, 2017. View at: Publisher Site | Google Scholar
  91. S. K. Shukla, A. Dasgupta, K. Mehla et al., “Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth,” Oncotarget, vol. 6, no. 38, pp. 41146–41161, 2015. View at: Publisher Site | Google Scholar
  92. D. O. Moon, M. O. Kim, Y. H. Choi, H. G. Lee, N. D. Kim, and G. Y. Kim, “Gossypol suppresses telomerase activity in human leukemia cells via regulating hTERT,” FEBS Letters, vol. 582, no. 23-24, pp. 3367–3373, 2008. View at: Publisher Site | Google Scholar
  93. R. C. Sun, P. G. Board, and A. C. Blackburn, “Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells,” Molecular Cancer, vol. 10, no. 1, p. 142, 2011. View at: Publisher Site | Google Scholar
  94. C. C. Huang, S.-Y. Wang, L.-L. Lin et al., “Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice,” Disease Models & Mechanisms, vol. 8, no. 10, pp. 1247–1254, 2015. View at: Publisher Site | Google Scholar
  95. S. Shukla, G. T. MacLennan, C. A. Flask et al., “Blockade of β-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice,” Cancer Research, vol. 67, no. 14, pp. 6925–6935, 2007. View at: Publisher Site | Google Scholar
  96. E. Gottfried, S. A. Lang, K. Renner et al., “New aspects of an old drug - diclofenac targets MYC and glucose metabolism in tumor cells,” PLoS One, vol. 8, no. 7, article e66987, 2013. View at: Publisher Site | Google Scholar
  97. M. Momcilovic, S. T. Bailey, J. T. Lee et al., “Targeted inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer,” Cell Reports, vol. 18, no. 3, pp. 601–610, 2017. View at: Publisher Site | Google Scholar
  98. S. C. Casey, L. Tong, Y. Li et al., “MYC regulates the antitumor immune response through CD47 and PD-L1,” Science, vol. 352, no. 6282, pp. 227–231, 2016. View at: Publisher Site | Google Scholar
  99. S. Wang, J. Li, J. Xie et al., “Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway,” Oncogene, vol. 37, no. 30, pp. 4164–4180, 2018. View at: Publisher Site | Google Scholar
  100. Y. W. Koh, J.-H. Han, S. Y. Park, D. H. Yoon, C. Suh, and J. Huh, “GLUT1 as a prognostic factor for classical Hodgkin’s lymphoma: correlation with PD-L1 and PD-L2 expression,” Journal of Pathology and Translational Medicine, vol. 51, no. 2, pp. 152–158, 2017. View at: Publisher Site | Google Scholar
  101. E. E. W. Cohen, D. Soulières, C. le Tourneau et al., “Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study,” The Lancet, vol. 393, no. 10167, pp. 156–167, 2019. View at: Publisher Site | Google Scholar
  102. J. Bellmunt, R. de Wit, D. J. Vaughn et al., “Pembrolizumab as second-line therapy for advanced urothelial carcinoma,” The New England Journal of Medicine, vol. 376, no. 11, pp. 1015–1026, 2017. View at: Publisher Site | Google Scholar
  103. R. S. Herbst, P. Baas, D. W. Kim et al., “Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial,” The Lancet, vol. 387, no. 10027, pp. 1540–1550, 2016. View at: Publisher Site | Google Scholar
  104. A. M. M. Eggermont, C. U. Blank, M. Mandala et al., “Adjuvant pembrolizumab versus placebo in resected stage III melanoma,” The New England Journal of Medicine, vol. 378, no. 19, pp. 1789–1801, 2018. View at: Publisher Site | Google Scholar
  105. X. Chen, Y. Qian, and S. Wu, “The Warburg effect: evolving interpretations of an established concept,” Free Radical & Biology Medicine, vol. 79, pp. 253–263, 2015. View at: Publisher Site | Google Scholar

Copyright © 2019 Barbara Marengo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

1013 Views | 405 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.