TY - JOUR AU - Chen, Meng AU - Yan, Xue-Tao AU - Ye, Li AU - Tang, Jun-Jiao AU - Zhang, Zong-Ze AU - He, Xiang-Hu PY - 2020 DA - 2020/06/22 TI - Dexmedetomidine Ameliorates Lung Injury Induced by Intestinal Ischemia/Reperfusion by Upregulating Cannabinoid Receptor 2, Followed by the Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway SP - 6120194 VL - 2020 AB - Intestinal ischemia/reperfusion (I/R) is a clinical emergency, which often causes lung injury with high morbidity and mortality. Although dexmedetomidine has been identified to have a protective effect on lung injury caused by intestinal I/R, its specific mechanism is still elucidated. In recent years, the cannabinoid (CB2) receptor pathway has been found to be involved in I/R injury of some organs. In the current study, we investigated whether the CB2 receptor pathway contributes to the protective effect of dexmedetomidine on the intestinal I/R-induced lung injury in rats. Dexmedetomidine treatment upregulated the expression of CB2 receptor and suppressed the I/R-induced increases in lung injury scores, inflammatory cell infiltration, lung wet/dry ratio, MPO activity, MDA level, inflammatory cytokines, and caspase-3 expression while augmenting SOD activity and Bcl-2 expression, indicating attenuation of lung injury. Dexmedetomidine treatment also increased the expression of Akt. The protective effects of dexmedetomidine treatment were reversed by the CB2 receptor antagonist AM630 or the PI3K inhibitor wortmannin. And the CB2 receptor antagonist AM630 also downregulated the expression of Akt. Thus, our findings suggest that treatment with dexmedetomidine provides a protective role against lung injury caused by intestinal I/R in rats, possibly due to the upregulation of the CB2 receptor, followed by the activation of the PI3K/Akt pathway. SN - 1942-0900 UR - https://doi.org/10.1155/2020/6120194 DO - 10.1155/2020/6120194 JF - Oxidative Medicine and Cellular Longevity PB - Hindawi KW - ER -