Review Article

Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application

Table 1

The protective effects and molecular mechanisms of plant-based foods against NAFLD and AFLD in experimental studies.

Plant-based foodsBioactive componentStudy typeModelsDosesMain effectsMolecular mechanismsRef

Fruits—NAFLD
GrapeResveratrolIn vitroHepG2 cells12.5, 25, 50, 100 μMInhibiting lipogenesis and proliferationNot mentioned[79]
Grape (red wine)ResveratrolIn vitro, in vivoHepG2 cells
SD rats
40 μM
100 mg/kg
Alleviating lipid accumulation and oxidative stressActivating the PKA-AMPK-PPAR-α pathway[80]
ResveratrolIn vitro, in vivoHepG2 cells, C57BL/6 mice20 μM for cells
0.4 % in the chow
Reducing the expression of FAS and SREBP-1c genesInhibiting methylation of Nrf2 promoter[81]
RutinIn vitro, in vivoHepG2 cells, RAW 246.7 cells, C57BL/6 mice10, 20, 40 μM
200 mg/kg
Inhibiting lipogenesis, oxidative injuries, and autophagyActivating the PPAR-α pathway[82]
Sweet cherryAnthocyaninsIn vitroHepG2 cells
LO2 cells
100, 200, 300 μg/mLInducing autophagyActivating AMPK and inhibiting mTOR and Akt pathways[83]
GrapePolymerized anthocyaninIn vivoC57BL/6J mice400 mg/kgImproving liver function, dyslipidemia, and hepatic steatosisActivating Nrf2 and SIRT1 and inhibiting PPAR-γ pathways[84]
TomatoIn vivoSD ratsFreely drinkAlleviating gut dysbiosisIncreasing Lactobacillus abundance and diminishing the acetate/propionate ratio[85]
LycopeneIn vivoSD rats
Wistar rats
5, 10, 20 mg/kgAlleviating liver injury, lipid accumulation, fat infiltration, and oxidative stressReverting activities of SOD, GSH, and CAT and decreasing TNF-α and CYP2E1 levels[8688]
Acerola cherryPolysaccharideIn vivoC57BL/6 mice200, 400, 800 mg/kg/dayImproving mitochondrial function, lipogenesis, oxidative stress, and inflammationInhibiting SREBP-1c and activating PGC-1α and Nrf2 pathways[89]
MulberryIn vivoSD rats100, 200 mg/kgAlleviating liver damage, dyslipidemia, and oxidative stressImproving mitochondrial function[90]
AçaiIn vivoFischer rats20 g/kgAlleviating steatosis and inflammationReducing liver enzymes and increasing GSH/GSSG[91]
Fruits—AFLD
ResveratrolIn vitroHepG2 cell5, 15, 45, 135 μMReducing lipid accumulationActivating the AMPK-lipin1 pathway[92]
Myricitrin
Myricetin
In vitroAML12 cells5, 10, 20, 40 μM
60μM
Alleviating steatosis, oxidative stress, and inflammationActivating the AMPK pathway[93, 94]
LemonIn vivoC57BL/6 mice10 mL/kgAlleviating lipid accumulation and lipid peroxidationDecreasing the levels of SOD and CAT[95]
BlueberryPolyphenolsIn vivoC57BL/6J mice1.5 mL/100 g
100, 200 mg/kg/day
Inhibiting apoptosis and promoting autophagyActivating SIRT1 and inhibiting FOXO1 pathways[96, 97]
LycheePhenolsIn vivoC57BL/6 mice150, 300 mg/kgAlleviating steatosis, oxidative stress, and gut dysbiosisActivating the Nrf2 pathway, decreasing cytochrome c, caspase-3 activities, and Bax/Bcl-2 ratio[98, 99]
MulberryIn vivoSD rats0.3 g/kgImproving steatosis, gut dysbiosis, and glucose metabolismAccelerating ethanol degradation, decreasing ratio of Firmicutes to Bacteroidetes[100]
AçaiIn vivoWistar rats1 mL/100 gAlleviating oxidative stress and inflammationInhibiting the NF-κB pathway[101]
Spices—NAFLD
CurcuminIn vitro
In vivo
Primary liver cells
C57BL/6 mice
10 μM
50, 100 mg/kg
Regulating bile acids and exogenous xenobiotic metabolismIncreasing Nrf2 and FXR and decreasing LXRα levels[102]
CurcuminIn vitro
In vivo
PBM cells
C57BL/6J mice
30 μM for cells
2 g/kg in the chow
Preventing intrahepatic CD4+ cell accumulation, oxidative stress, and inflammationInhibiting the production of ROS, TNF-α, and IFN-γ[103]
CurcuminIn vitro
In vivo
AML12 cells
C57BL/6J mice
0.3, 3 μM
100 mg/kg
Alleviating lipid accumulation, oxidative stress, and inflammationInhibiting O-GlcNAcylation of NF-κB and upregulating the SIRT1-AMPK-ACC pathway[104]
OnionIn vivoSD rats7% /Alleviating steatosis, ballooning, and lobular and portal inflammationDecreasing levels of TNF-α, ALT, AST, TG, insulin, and glucose[105, 106]
Spices—AFLD
GarlicAllicinIn vivoC57BL/6 mice5, 20 mg/kg/dayAlleviating oxidative stress and inflammationReducing the levels of SERBP-1c, CYP2E1, TNF-α, IL-1β, and IL-6, increasing the levels of GSH, CAT, and the activity of ADH[107]
GarlicAllicinIn vivoC57BL/6 mice5, 20 mg/kg/dayAlleviating steatosis, inflammation, and gut dysbiosisInhibiting the LPS-TLR4 pathway[62]
GingerIn vivoWistar rats50 mg/kgAlleviating lipid accumulation and liver enzyme changesIncreasing the expression of HNF4A and decreasing the expression of the PTP1B gene[108]
CurcuminIn vivoKunming mice60 mg/kgSuppressing fatty acid biosynthesis and pentose glucuronate pathwayInhibiting the metabolisms of glyoxylate, dicarboxylate, and pyruvate[109]
Tea—NAFLD
Green teaCatechinsIn vitro
In vivo
HepG2 cells
C57BL/6 mice
2 μM and 0.19%
500 mg/kg
Alleviating lipid accumulation, increasing gene expression related to catabolism of TG and fatty acidDownregulating miR-34a and upregulating miR-194[110]
Raw bowl dark teaPolyphenolIn vitro
In vivo
3T3-L1 preadipocytes
C57BL/6N mice
200 μg/mL
50, 100 mg/kg/day
Alleviating lipid accumulation, oxidative stress, and inflammation and improving the intestinal environmentIncreasing the levels of occludin, ZO-1, Bacteroides, and Akkermansia and reducing the level of Firmicutes[111]
Hao Ling teaPolyphenol
Caffeine
In vitro
In vivo
Primary liver cells
Wistar rats
100, 250, 500 μg/mL
10% in the drink
Alleviating hepatic steatosis and oxidative stressInhibiting the production of mitochondrial ROS[112]
Green teaPhenols
Flavonoids
In vivoWistar rats300 mg/kgImproving hyperlipidemia and oxidative stressIncreasing the activity of SOD[113]
Green teaPolyphenolIn vivoZucker rats200 mg/kgDecreasing lipogenesis, levels of insulin, glucose, liver enzymes, TNF-α, and IL-6Upregulating the AMPK pathway[114]
Ning Hong black teaIn vivoSD rats2% in the chowDecreasing the body fat ratio and the number of lipid droplets in the liverUpregulating expression of PPAR-α and MTP, promoting fatty acid β-oxidation and VLDL synthesis[115]
Tea—AFLD
Green teaIn vivoKunming mice10 mL/kgImproving ethanol metabolism and liver functionIncreasing the activities of ADH and ALDH[116]
Green teaCatechins
Caffeine
In vivoWistar rats20 mL/kg/dayAlleviating lipogenesis and oxidative injuryReducing levels of SREBP-1c, FAS, CYP2E1, and NADPH oxidase p47phox protein[117]
Green teaEGCGIn vivoWistar rats300 mg/kg/dayAlleviating oxidative stress and necrosisDecreasing levels of TNF-α and 4-hydroxynonenal[118]
Green teaEGCGIn vivoWistar rats3 g/LImproving fatty liver and the levels of ALT and ASTIncreasing the phosphorylation of ACC and the level of CPT-1[119]
Green teaCatechinIn vivoWistar rats50 mg/kg/dayAlleviating fatty changes, liver dysfunction, and oxidative stressInhibiting the NF-κB pathway[120]
Coffee—NAFLD
Caffeic acidIn vitro
In vivo
AML 12
C57BL/6 mice
12.5, 25, 50, 100, 200 μM
50 mg/kg/day
Alleviating steatosis endoplasmic reticulum stress and increasing autophagyActivating the Akt pathway[121]
TrigonellineIn vitro
In vivo
AML 12
HepG2 cells
C57BL/6J mice
50, 200 μM
50 mg/kg
Alleviating steatosis and lipotoxicity and promoting autophagyDeceasing the phosphorylation of mTOR and the expression of PPAR-γ, SREBP-1, perilipin, and CD36[122]
CoffeeCaffeineIn vitro
In vivo
HepG2 cells
C57BL/6 mice
2 mM
10, 20 mg/kg
Alleviating steatosisActivating the SIRT3-AMPK-ACC pathway[123]
CoffeeCaffeineIn vivoTsumura Suzuki nonobese mice1 g/L, freely drinkInhibiting pancreatic-β cell damage and nonalcoholic steatohepatitisNot mentioned[124]
CoffeeIn vivoWistar rats1000 mg/kgAlleviating steatosis, insulin resistance, and oxidative stressUpregulating the expression of PPAR-α[125]
CoffeeIn vivoC57BL/6J mice4:1, /, freely drinkImproving liver fat oxidation, intestinal cholesterol efflux, energy metabolism, and gut permeabilityUpregulating the expression of PPAR-α, acyl-CoA oxidase-1, ABCA1, ABCG1, zonulin-1, claudin, and peptide YY, as well as increasing the abundance of Alcaligenaceae[126]
TrigonellineIn vivoSD rats40 mg/kg/dayAlleviating steatosis and the damage degree of the liverIncreasing the level of SOD and the expression of Bcl-2[127]
CoffeeCaffeineIn vivoC57BL/6J mice0.5 mg/mL, freely drinkAlleviating steatosisActivating STAT3 in the liver and increasing IL-6 in circulation[128]
CoffeeCaffeineIn vivoSD rats8 g/180 mL in drinking water, 0.18 g/kg in dietAlleviating steatosisDecreasing the phosphorylation of mTOR and increasing the level of nuclear lipin1[129, 130]
CoffeeIn vivoWistar rats
C57BL/6J mice
6 g/kgImproving the gut permeability and intestinal barrier functionIncreasing the expression of occludin and ZO-1, decreasing the expression of TLR4[131]
CoffeeCaffeineIn vivoWistar rats30, 60, 120 mg/kg/dayIncreasing the susceptibility of NAFLD in offspringInhibiting the expression of SIRT1[132]
Coffee—AFLD
CoffeeCaffeineIn vivoKunming mice5, 10, 20 mg/kgAlleviating hepatic cell damage, steatosis, and inflammatory responseDecreasing the expression of SERBP-1c, Fas, ACC, SCD 1, and the levels of TNF-α, IL-1β/6, IFN-γ, and MCP-1[133]
CoffeeCaffeineIn vivoSD rats5, 10, and 20 mg/kg/dayInhibiting the activation of hepatic stellate cellInhibiting the PKA pathway[134]
CoffeeCaffeic acidIn vivoWistar rats12 mg/kg/dayDecreasing the levels of TG, TC, free fatty acids, and phospholipids in the circulation and liver[135]
Other plants—NAFLD
Heshouwu (Fallopia multiflora)Stilbenes anthraquinonesIn vitro
In vivo
L02 cell
Wistar rats
3.75, 7.5, 15, 30, 60 μg/mL
70, 140, 280 mg/kg
Improving mitochondrial β oxidation and dyslipidemiaIncreasing the expression of CPT-1α[136]
Hongjingtian (Rhodiola rosea)SalidrosideIn vitroL02 cell75, 150, 300 μg/mLAlleviating steatosis, inflammation, and activating autophagyInhibiting the TRPM2-Ca2+-CaMKII pathway[137]
SilybinIn vitroFaO cells50 μMAlleviating fat accumulation and mitochondrial damageIncreasing the expression of PPAR-α/δ and decreasing the expression of PPAR-γ[138]
SilybinIn vivoC57BL/6J mice50, 100 mg/kg/dayRegulating lipid metabolism and global metabolic pathwaysModulating the metabolisms of lipid, polyol, amino acid, urea cycle, and TCA cycle[139]
Curcumin and salidrosideIn vivoSD rats21.76 mg/kg/d and 5.77 mg/kg/dAlleviating insulin resistance and lipid peroxidationActivating the AMPK pathway[140]
Cassia (Cassia obtusifolia)In vivoWistar rats0.5, 1, 2 g/kgAlleviating histopathological changes, dyslipidemia, and lipid peroxidation in the liverIncreasing the activities of SOD and GSH[141]
Jishiteng (Paederia scandens)In vivoRoss 305 chicks2 mg/kgAlleviating oxidative stressDecreasing the level of HSP7C[142]
Heshouwu (Fallopia multiflora)In vivoZebrafish0.5, 1 mg/mL
0.25, 0.5 μg/mL
Reducing lipogenesis and insulin resistanceActivating the PI3K-Akt2 -AMPK-PPAR-α pathway[143]
Other plants—AFLD
Ginseng (Panax ginseng)GinsenosidesIn vitroL02 cells25, 50, 100 μg/mLAlleviating steatosis, oxidative stress, and mitochondrial dysfunctionIncreasing the expression of PPAR-α and decreasing the expression of CYP2E1[144]
White flower dandelion (Taraxacum coreanum)In vivoSD rats1 g/kg/dayImproving body composition, glucose metabolism, ethanol degradation, and gut dysbiosisDecreasing the ratio of Firmicutes to Bacteroidetes[100]
Zhijuzi (Hovenia dulcis)In vivoSD rats300, 500 mg/kgAlleviating steatosis and inflammationIncreasing PPAR-α, PPAR-γC1α, CPT-1α, and Acsl1 gene expression, decreasing Myd88, TNF-α, and CRP gene expression[145]
Platycodon grandiflorumPlatycodin DIn vivoSD rats10, 20, 30 mg/kg/dayInhibiting inflammation and endotoxic processInhibiting the TLR4-MyD88-NF-κB pathway[146]
Ecklonia stoloniferaPhlorotanninsIn vivoSD rats50, 100, 200 mg/kg/dayImproving liver function and lipid profilesIncreasing the expression of PPAR-α and CPT-1 and decreasing the expression of SREBP-1c[147]

ABCA1: ATP-binding cassette subfamily A1; ABCG1: ATP-binding cassette subfamily G1; ACC: acetyl-CoA carboxylase; ADH: alcohol dehydrogenase; Akt: protein kinase B; ALT: alanine aminotransferase; AMPK: adenosine 5-monophosphate-activated protein kinase; ALDH: aldehyde dehydrogenase; ALP: alkaline phosphatase; AST: aspartate aminotransferase; Bax: Bcl2-associated X protein; Bcl-2: B-cell lymphoma-2; CAT: catalase; CPT-1: carnitine palmitoyltransferase 1; CYP2E1: cytochrome P450 2E1; EGCG: epigallocatechin gallate; FAS: fatty acid synthase; FOXO1: forkhead box protein O1; FXR: farnesoid X receptor; GSH: glutathione; GSH-Px: glutathione peroxidase; GSSG: oxidized glutathione; HNF4A: hepatocyte nuclear factor 4 α; IL-1β/6/8: interleukin-1β/6/8; IFN-γ: interferon-γ; LPS: lipopolysaccharide; LXRα: liver X receptor α; MCP-1: monocyte chemoattractant protein 1; MDA: malondialdehyde; miR-34a/194: microRNA-34a/194; mTOR: mammalian target rapamycin; MTP: microsomal triglyceride transfer protein; NADPH: nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear factor kappa-B; Nrf2: nuclear factor erythroid 2-related factor 2; PBM cells: peripheral blood mononuclear cells; PGC-1α: peroxisomal proliferator-activated receptor-gamma coactivator-1α; PKA: protein kinase A; PPAR-α/γ: peroxisome proliferator-activated receptor-α/γ; PTP1B: protein tyrosine phosphatase 1B; ROS: reactive oxygen species; SCD 1: stearoyl-CoA desaturase 1; SD rats: Sprague-Dawley rats; SIRT1: sirtuin 1; SOD: superoxide dismutase; SREBP-1c: sterol regulatory element-binding transcription factor 1c; STAT3: signal transducer and activator of transcription 3; TG: triglyceride; TLR 4: toll-like receptor 4; TNF-α: tumor necrosis factor-α; VLDL: very low-density lipoprotein; ZO-1: zonula occludens-1.