Table of Contents Author Guidelines Submit a Manuscript
Prostate Cancer
Volume 2011 (2011), Article ID 249290, 10 pages
http://dx.doi.org/10.1155/2011/249290
Review Article

Metastasis Update: Human Prostate Carcinoma Invasion via Tubulogenesis

1Department of Pathology, The Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
2Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA

Received 1 March 2011; Accepted 25 April 2011

Academic Editor: Cristina Magi-Galluzzi

Copyright © 2011 Raymond B. Nagle and Anne E. Cress. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Christiansen and A. K. Rajasekaran, “Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis,” Cancer Research, vol. 66, no. 17, pp. 8319–8326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. Hay, “The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it,” Developmental Dynamics, vol. 233, no. 3, pp. 706–720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Lee, S. Dedhar, R. Kalluri, and E. W. Thompson, “The epithelial-mesenchymal transition: new insights in signaling, development, and disease,” Journal of Cell Biology, vol. 172, no. 7, pp. 973–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Grünert, M. Jechlinger, and H. Beug, “Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis,” Nature Reviews Molecular Cell Biology, vol. 4, no. 8, pp. 657–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. R. Hurst and D. R. Welch, “Metastasis suppressor genes at the interface between the environment and tumor cell growth,” International Review of Cell and Molecular Biology, vol. 286, pp. 107–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Cardiff, “Epithelial to mesenchymal transition tumors: fallacious or snail's pace?” Clinical Cancer Research, vol. 11, no. 24, pp. 8534–8537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Cardiff, “The pathology of EMT in mouse mammary tumorigenesis,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, pp. 225–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Tarin, E. W. Thompson, and D. F. Newgreen, “The fallacy of epithelial mesenchymal transition in neoplasia,” Cancer Research, vol. 65, pp. 5996–6000, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hugo, M. L. Ackland, T. Blick et al., “Epithelial—Mesenchymal and mesenchymal—epithelial transitions in carcinoma progression,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 374–383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Chaffer, J. P. Brennan, J. L. Slavin, T. Blick, E. W. Thompson, and E. D. Williams, “Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2,” Cancer Research, vol. 66, no. 23, pp. 11271–11278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. I. Epstein, W. C. Allsbrook, M. B. Amin et al., “The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma,” American Journal of Surgical Pathology, vol. 29, no. 9, pp. 1228–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. De Marzo, B. Knudsen, K. Chan-Tack, and J. I. Epstein, “E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens,” Urology, vol. 53, no. 4, pp. 707–713, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Pontes-Junior, S. T. Reis, M. Dall'Oglio, L. C. Neves de Oliveira, and J. Cury, “Evaluation of the expression of integrins and cell adhesion molecules through tissue microarray in lymph node metastases of prostate cancer,” Journal of Carcinogenesis, vol. 8, p. 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 445–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. L. Hogan and P. A. Kolodziej, “Organogenesis: molecular mechanisms of tubulogenesis,” Nature Reviews Genetics, vol. 3, no. 7, pp. 513–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Thomson and P. C. Marker, “Branching morphogenesis in the prostate gland and seminal vesicles,” Differentiation, vol. 74, no. 7, pp. 382–392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Knox, A. E. Cress, V. Clark et al., “Differential expression of extracellular matrix molecules and the α 6-integrins in the normal and neoplastic prostate,” American Journal of Pathology, vol. 145, no. 1, pp. 167–174, 1994. View at Google Scholar · View at Scopus
  18. A. E. Cress, I. Rabinovitz, W. Zhu, and R. B. Nagle, “The α 6 β 1 and α 6 β 4 integrins in human prostate cancer progression,” Cancer and Metastasis Reviews, vol. 14, no. 3, pp. 219–228, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Davis, A. E. Cress, B. L. Dalkin, and R. B. Nagle, “Unique expression pattern of the α6β4 integrin and laminin-5 in human prostate carcinoma,” Prostate, vol. 46, no. 3, pp. 240–248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Pulkkinen and J. Uitto, “Hemidesmosomal variants of epidermolysis bullosa: Mutations in the αβ integrin and the 180-kD bullous pemphigoid antigen/type XVII collagen genes,” Experimental Dermatology, vol. 7, no. 2-3, pp. 46–64, 1998. View at Google Scholar · View at Scopus
  21. T. Rozario and D. W. DeSimone, “The extracellular matrix in development and morphogenesis: a dynamic view,” Developmental Biology, vol. 341, no. 1, pp. 126–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. H. Streuli, “Integrins and cell-fate determination,” Journal of Cell Science, vol. 122, no. 2, pp. 171–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. B. Nagle, J. Hao, J. D. Knox, B. L. Dalkin, V. Clark, and A. E. Cress, “Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue,” American Journal of Pathology, vol. 146, no. 6, pp. 1498–1507, 1995. View at Google Scholar · View at Scopus
  24. J. Hao, Y. Yang, K. M. McDaniel, B. L. Dalkin, A. E. Cress, and R. B. Nagle, “Differential expression of laminin 5 (α 3 β 3 γ 2) by human malignant and normal prostate,” American Journal of Pathology, vol. 149, no. 4, pp. 1341–1349, 1996. View at Google Scholar · View at Scopus
  25. C. L. Kremer, M. Schmelz, and A. E. Cress, “Integrin-dependent amplification of the G2 arrest induced by ionizing radiation,” Prostate, vol. 66, no. 1, pp. 88–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Raymond, M. Kreft, J. Y. Song, H. Janssen, and A. Sonnenberg, “Dual role of α6β4 integrin in epidermal tumor growth: tumor-suppressive versus tumor-promoting function,” Molecular Biology of the Cell, vol. 18, no. 11, pp. 4210–4221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Bonkhoff and K. Remberger, “Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model,” Prostate, vol. 28, no. 2, pp. 98–106, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. Hudson, “Epithelial stem cells in human prostate growth and disease,” Prostate Cancer and Prostatic Diseases, vol. 7, no. 3, pp. 188–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Jaamaa, T. M. Af Hallstrom, A. Sankila, V. Rantanen, and H. Koistinen, “DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue,” Cancer Research, vol. 70, pp. 8630–-8641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. C. Malins, P. M. Johnson, E. A. Barker, N. L. Polissar, T. M. Wheeler, and K. M. Anderson, “Cancer-related changes in prostate DNA as men age and early identification of metastasis in primary prostate tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5401–5406, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. B. Nagle, J. D. Knox, C. Wolf, G. T. Bowden, and A. E. Cress, “Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma,” Journal of Cellular Biochemistry, vol. 56, no. 19, pp. 232–237, 1994. View at Google Scholar · View at Scopus
  32. M. Schmelz, A. E. Cress, K. M. Scott, F. Burger, and H. Cui, “Different phenotypes in human prostate cancer: alpha6 or alpha3 integrin in cell-extracellular adhesion sites,” Neoplasia, vol. 4, pp. 243–254, 2002. View at Google Scholar · View at Scopus
  33. P. Ekblom, P. Lonai, and J. F. Talts, “Expression and biological role of laminin-1,” Matrix Biology, vol. 22, no. 1, pp. 35–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Schéele, A. Nyström, M. Durbeej, J. F. Talts, M. Ekblom, and P. Ekblom, “Laminin isoforms in development and disease,” Journal of Molecular Medicine, vol. 85, no. 8, pp. 825–836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Petein, P. Michel, R. Van Velthoven et al., “Morphonuclear relationship between prostatic intraepithelial neoplasia and cancers as assessed by digital cell image analysis,” American Journal of Clinical Pathology, vol. 96, no. 5, pp. 628–634, 1991. View at Google Scholar · View at Scopus
  36. R. B. Nagle, M. Petein, M. Brawer, G. T. Bowden, and A. E. Cress, “New relationships between prostatic intraepithelial neoplasia and prostatic carcinoma,” Journal of Cellular Biochemistry, pp. 26–29, 1992. View at Google Scholar · View at Scopus
  37. J. M. Mosquera, R. Mehra, M. M. Regan et al., “Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States,” Clinical Cancer Research, vol. 15, no. 14, pp. 4706–4711, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Mosquera, S. Perner, E. M. Genega et al., “Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications,” Clinical Cancer Research, vol. 14, no. 11, pp. 3380–3385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. G. Bostwick, “Prospective origins of prostate carcinoma: prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia,” Cancer, vol. 78, no. 2, pp. 330–336, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Häggman, J. A. Macoska, K. J. Wojno, and J. E. Oesterling, “The relationship between prostatic intraepithelial neoplasia and prostate cancer: critical issues,” Journal of Urology, vol. 158, no. 1, pp. 12–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. G. Man, “A seemingly most effective target for early detection and intervention of prostate tumor invasion,” Journal of Cancer, vol. 1, pp. 63–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. G. Man, “Tumor cell budding from focally disrupted tumor capsules: a common pathway for all breast cancer subtype derived invasion?” Journal of Cancer, vol. 1, pp. 32–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. A. Sakr, D. J. Grignon, J. D. Crissman et al., “High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases,” In Vivo, vol. 8, no. 3, pp. 439–444, 1994. View at Google Scholar · View at Scopus
  44. W. A. Sakr, G. P. Haas, B. F. Cassin, J. E. Pontes, and J. D. Crissman, “The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients,” Journal of Urology, vol. 150, no. 2, pp. 379–385, 1993. View at Google Scholar · View at Scopus
  45. J. Hao, K. McDaniel, C. Weyer, J. Barrera, and R. B. Nagle, “Cell line-specific translation of two laminin 5 β3 chain isoforms,” Gene, vol. 283, no. 1-2, pp. 237–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Breuninger, S. Reidenbach, C. G. Sauer et al., “Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression,” American Journal of Pathology, vol. 176, no. 5, pp. 2509–2519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. A. Martin and W. G. Jiang, “Loss of tight junction barrier function and its role in cancer metastasis,” Biochimica et Biophysica Acta, vol. 1788, no. 4, pp. 872–891, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Montell, “Morphogenetic cell movements: diversity from modular mechanical properties,” Science, vol. 322, no. 5907, pp. 1502–1505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Affolter and E. Caussinus, “Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture,” Development, vol. 135, no. 12, pp. 2055–2064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. B. E. Kerman, A. M. Cheshire, and D. J. Andrew, “From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis,” Differentiation, vol. 74, no. 7, pp. 326–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Lu, M. D. Sternlicht, and Z. Werb, “Comparative mechanisms of branching morphogenesis in diverse systems,” Journal of Mammary Gland Biology and Neoplasia, vol. 11, no. 3-4, pp. 213–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. D. Sternlicht, H. Kouros-Mehr, P. Lu, and Z. Werb, “Hormonal and local control of mammary branching morphogenesis,” Differentiation, vol. 74, no. 7, pp. 365–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Ghysen and C. Dambly-Chaudière, “The lateral line microcosmos,” Genes and Development, vol. 21, no. 17, pp. 2118–2130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Busch, T. A. Hanssen, C. Wagener, and B. OBrink, “Down-regulation of CEACAM1 in human prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition,” Human Pathology, vol. 33, no. 3, pp. 290–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. L. E. Lamb, B. S. Knudsen, and C. K. Miranti, “E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model,” Journal of Cell Science, vol. 123, no. 2, pp. 266–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. S. Knudsen and C. K. Miranti, “The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression,” Journal of Cellular Biochemistry, vol. 99, no. 2, pp. 345–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Borghi, M. Lowndes, V. Maruthamuthu, M. L. Gardel, and W. J. Nelson, “Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions,” Proceedings of the National Academy of Sciences, vol. 107, pp. 13324–13329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Rabinovitz, R. B. Nagle, and A. E. Cress, “Integrin α 6 expression in human prostate carcinoma cells is associated with a migratory and invasive phenotype in vitro and in vivo,” Clinical and Experimental Metastasis, vol. 13, no. 6, pp. 481–491, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Murant, J. Handley, M. Stower, N. Reid, O. Cussenot, and N. J. Maitland, “Co-ordinated changes in expression of cell adhesion molecules in prostate cancer,” European Journal of Cancer Part A, vol. 33, no. 2, pp. 263–271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Umbas, W. B. Isaacs, P. P. Bringuier et al., “Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer,” Cancer Research, vol. 54, no. 14, pp. 3929–3933, 1994. View at Google Scholar · View at Scopus
  61. K. Wolf, Y. I. Wu, Y. Liu et al., “Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion,” Nature Cell Biology, vol. 9, no. 8, pp. 893–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Nabeshima, T. Inoue, Y. Shimao et al., “Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor,” Cancer Research, vol. 60, no. 13, pp. 3364–3369, 2000. View at Google Scholar · View at Scopus
  63. W. C. Powell, J. D. Knox, M. Navre et al., “Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice,” Cancer Research, vol. 53, no. 2, pp. 417–422, 1993. View at Google Scholar · View at Scopus
  64. J. R. Mccandless, A. E. Cress, I. Rabinovitz et al., “A human xenograft model for testing early events of epithelial neoplastic invasion,” International Journal of Oncology, vol. 10, no. 2, pp. 279–285, 1997. View at Google Scholar · View at Scopus
  65. A. J. Daly, L. McIlreavey, and C. R. Irwin, “Regulation of HGF and SDF-1 expression by oral fibroblasts—implications for invasion of oral cancer,” Oral Oncology, vol. 44, no. 7, pp. 646–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. R. A. Hurle, G. Davies, C. Parr et al., “Hepatocyte growth factor/scatter factor and prostate cancer: a review,” Histology and Histopathology, vol. 20, no. 4, pp. 1339–1349, 2005. View at Google Scholar · View at Scopus
  67. F. Marchesi, L. Piemonti, A. Mantovani, and P. Allavena, “Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis,” Cytokine and Growth Factor Reviews, vol. 21, no. 1, pp. 77–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. R. K. Miller and P. D. McCrea, “Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis,” Developmental Dynamics, vol. 239, no. 1, pp. 77–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. G. W. Yardy and S. F. Brewster, “Wnt signalling and prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 8, no. 2, pp. 119–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. C. I. Truica, S. Byers, and E. P. Gelmann, “β-catenin affects androgen receptor transcriptional activity and ligand specificity,” Cancer Research, vol. 60, no. 17, pp. 4709–4713, 2000. View at Google Scholar · View at Scopus
  71. C. Liebig, G. Ayala, J. A. Wilks, D. H. Berger, and D. Albo, “Perineural invasion in cancer: a review of the literature,” Cancer, vol. 115, no. 15, pp. 3379–3391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Kayahara, H. Nakagawara, H. Kitagawa, and T. Ohta, “The nature of neural invasion by pancreatic cancer,” Pancreas, vol. 35, no. 3, pp. 218–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. I. C. Sroka, T. A. Anderson, K. M. McDaniel, R. B. Nagle, M. B. Gretzer, and A. E. Cress, “The laminin binding integrin alpha6beta1 in prostate cancer perineural invasion,” Journal of Cellular Physiology, vol. 224, no. 2, pp. 283–288, 2010. View at Google Scholar · View at Scopus
  74. M. R. Cooperberg, J. W. Moul, and P. R. Carroll, “The changing face of prostate cancer,” Journal of Clinical Oncology, vol. 23, no. 32, pp. 8146–8151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. I. N. Holcomb, D. I. Grove, M. Kinnunen et al., “Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate cancer patients,” Cancer Research, vol. 68, no. 14, pp. 5599–5608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Beheshti, B. Vukovic, P. Marrano, J. A. Squire, and P. C. Park, “Resolution of genotypic heterogeneity in prostate tumors using polymerase chain reaction and comparative genomic hybridization on microdissected carcinoma and prostatic intraepithelial neoplasia foci,” Cancer Genetics and Cytogenetics, vol. 137, no. 1, pp. 15–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Liu, S. K. Lau, V. A. Varma et al., “Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots,” ACS Nano, vol. 4, no. 5, pp. 2755–2765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Kouros-Mehr and Z. Werb, “Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis,” Developmental Dynamics, vol. 235, no. 12, pp. 3404–3412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Proust-Lima, J. M. Taylor, S. Secher, H. Sandler, and L. Kestin, “Confirmation of a low alpha/beta ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics,” International Journal of Radiation Oncology Biology Physics, vol. 79, pp. 195–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. E. K. Oermann, R. S. Slack, H. N. Hanscom, S. Lei, and S. Suy, “A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer,” Technology in Cancer Research and Treatment, vol. 9, pp. 453–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. H. Barcellos-Hoff, C. Park, and E. G. Wright, “Radiation and the microenvironment—tumorigenesis and therapy,” Nature Reviews Cancer, vol. 5, no. 11, pp. 867–875, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Cordes, “Integrin-mediated cell-matrix interactions for prosurvivaland antiapoptotic signaling after genotoxic injury,” Cancer Letters, vol. 242, no. 1, pp. 11–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Cordes, M. A. Blaese, L. Plasswilm, H. P. Rodemann, and D. Van Beuningen, “Fibronectin and laminin increase resistance to ionizing radiation and the cytotoxic drug Ukrain in human tumour and normal cells in vitro,” International Journal of Radiation Biology, vol. 79, no. 9, pp. 709–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Cordes and V. Meineke, “Integrin signalling and the cellular response to ionizing radiation,” Journal of Molecular Histology, vol. 35, no. 3, pp. 327–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Cordes and V. Meineke, “Modification of the cellular radiation survival and proliferation response by cell-matrix interactions: implications for integrin targeting in therapeutic approaches for radiation accident patients,” The British Journal of Radiology, 27, pp. 152–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Cordes, J. Seidler, R. Durzok, H. Geinitz, and C. Brakebusch, “β 1 -integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury,” Oncogene, vol. 25, no. 9, pp. 1378–1390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Cordes and D. Van Beuningen, “Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3β (GSK-3β) in vitro,” British Journal of Cancer, vol. 88, no. 9, pp. 1470–1479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Cordes, D. Diesing, S. Becker, K. Diedrich, J. Reichrath, and M. Friedrich, “Modulation of MAPK ERK1 and ERK2 in VDR-positive and -negative breast cancer cell lines,” Anticancer Research, vol. 26, no. 4 A, pp. 2749–2753, 2006. View at Google Scholar · View at Scopus
  90. C. C. Park, H. J. Zhang, E. S. Yao, C. J. Park, and M. J. Bissell, “β 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts,” Cancer Research, vol. 68, no. 11, pp. 4398–4405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. S. C. Pawar, S. Dougherty, M. E. Pennington et al., “α6 integrin cleavage: sensitizing human prostate cancer to ionizing radiation,” International Journal of Radiation Biology, vol. 83, no. 11-12, pp. 761–767, 2007. View at Publisher · View at Google Scholar · View at Scopus