Table of Contents Author Guidelines Submit a Manuscript
Prostate Cancer
Volume 2011 (2011), Article ID 893208, 14 pages
http://dx.doi.org/10.1155/2011/893208
Research Article

Role of Heparan Sulfate 2-O-Sulfotransferase in Prostate Cancer Cell Proliferation, Invasion, and Growth Factor Signaling

Department of Biochemistry/Biophysics, Texas A&M University, MS 2128, College Station, TX 77845, USA

Received 13 April 2011; Revised 11 July 2011; Accepted 17 August 2011

Academic Editor: Shuyuan Yeh

Copyright © 2011 Brent W. Ferguson and Sumana Datta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Lin, “Functions of heparan sulfate proteoglycans in cell signaling during development,” Development, vol. 131, no. 24, pp. 6009–6021, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. H. Baeg and N. Perrimon, “Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila,” Current Opinion in Cell Biology, vol. 12, no. 5, pp. 575–580, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Rubin, Y. Choi, and R. A. Segal, “Cerebellar proteoglycans regulate sonic hedgehog responses during development,” Development, vol. 129, no. 9, pp. 2223–2232, 2002. View at Google Scholar · View at Scopus
  4. S. Datta and M. W. Datta, “Sonic Hedgehog signaling in advanced prostate cancer,” Cellular and Molecular Life Sciences, vol. 63, no. 4, pp. 435–448, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. L. Zhu and N. Kyprianou, “Androgen receptor and growth factor signaling cross-talk in prostate cancer cells,” Endocrine-Related Cancer, vol. 15, no. 4, pp. 841–849, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. F. Brimo, R. T. Vollmer, M. Friszt, J. Corcos, and T. A. Bismar, “Syndecan-1 expression in prostate cancer and its value as biomarker for disease progression,” BJU International, vol. 106, no. 3, pp. 418–423, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. Shimada, M. Nakamura, M. A. De Velasco, M. Tanaka, Y. Ouji, and N. Konishi, “Syndecan-1, a new target molecule involved in progression of androgen-independent prostate cancer,” Cancer Science, vol. 100, no. 7, pp. 1248–1254, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. W. Datta, A. M. Hernandez, M. J. Schlicht et al., “Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway,” Molecular Cancer, vol. 5, article 9, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. C. Savorè, C. Zhang, C. Muir et al., “Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo,” Clinical and Experimental Metastasis, vol. 22, no. 5, pp. 377–390, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. X. Xie, H. Zhang, J. Wang et al., “Analysis of differentially expressed genes in LNCaP prostate cancer progression model,” Journal of Andrology, vol. 32, no. 2, pp. 170–182, 2011. View at Google Scholar
  11. H. C. Wu, J. T. Hsieh, M. E. Gleave, N. M. Brown, S. Pathak, and L. W. K. Chung, “Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells,” International Journal of Cancer, vol. 57, no. 3, pp. 406–412, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. G. N. Thalmann, P. E. Anezinis, S. M. Chang et al., “Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer,” Cancer Research, vol. 54, no. 10, pp. 2577–2581, 1994. View at Google Scholar · View at Scopus
  13. R. Flaumenhaft, D. Moscatelli, and D. B. Rifkin, “Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor,” Journal of Cell Biology, vol. 111, no. 4, pp. 1651–1659, 1990. View at Google Scholar · View at Scopus
  14. D. M. Ornitz, A. Yayon, J. G. Flanagan, C. M. Svahn, E. Levi, and P. Leder, “Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells,” Molecular and Cellular Biology, vol. 12, no. 1, pp. 240–247, 1992. View at Google Scholar · View at Scopus
  15. J. Kreuger, D. Spillmann, J. P. Li, and U. Lindahl, “Interactions between heparan sulfate and proteins: the concept of specificity,” Journal of Cell Biology, vol. 174, no. 3, pp. 323–327, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Ashikari-Hada, H. Habuchi, Y. Kariya, N. Itoh, A. H. Reddi, and K. Kimata, “Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12346–12354, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Habuchi, O. Habuchi, and K. Kimata, “Sulfation pattern in glycosaminoglycan: does it have a code?” Glycoconjugate Journal, vol. 21, no. 1-2, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. M. Brown, “Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies,” Molecular Medicine Today, vol. 6, no. 4, pp. 157–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. G. L. Semenza, “HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus,” Cell, vol. 107, no. 1, pp. 1–3, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Petros, A. K. Baumann, E. Ruiz-Pesini et al., “MtDNA mutations increase tumorigenicity in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 719–724, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. S. Kimbro and J. W. Simons, “Hypoxia-inducible factor-1 in human breast and prostate cancer,” Endocrine-Related Cancer, vol. 13, no. 3, pp. 739–749, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H. Zhong, A. M. De Marzo, E. Laughner et al., “Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases,” Cancer Research, vol. 59, no. 22, pp. 5830–5835, 1999. View at Google Scholar · View at Scopus
  23. H. Zhong, F. Agani, A. A. Baccala et al., “Increased expression of hypoxia inducible factor-1α in rat and human prostate cancer,” Cancer Research, vol. 58, no. 23, pp. 5280–5284, 1998. View at Google Scholar · View at Scopus
  24. G. D. Dakubo, R. L. Parr, L. C. Costello, R. B. Franklin, and R. E. Thayer, “Altered metabolism and mitochondrial genome in prostate cancer,” Journal of Clinical Pathology, vol. 59, no. 1, pp. 10–16, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. S. Horoszewicz, S. S. Leong, and E. Kawinski, “LNCaP model of human prostatic carcinoma,” Cancer Research, vol. 43, no. 4, pp. 1809–1818, 1983. View at Google Scholar · View at Scopus
  26. R. Kemler, “From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion,” Trends in Genetics, vol. 9, no. 9, pp. 317–321, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. N. A. Gloushankova, “Changes in regulation of cell-cell adhesion during tumor transformation,” Biochemistry, vol. 73, no. 7, pp. 742–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. S. Chu, W. A. Thomas, O. Eder et al., “Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42,” Journal of Cell Biology, vol. 167, no. 6, pp. 1183–1194, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. Vaupel, D. K. Kelleher, and M. Höckel, “Oxygenation status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Seminars in Oncology, vol. 28, no. 2, supplement 8, pp. 29–35, 2001. View at Google Scholar
  30. H. Zhong, K. Chiles, D. Feldser et al., “Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics,” Cancer Research, vol. 60, no. 6, pp. 1541–1545, 2000. View at Google Scholar · View at Scopus
  31. H. Zhong, G. L. Semenza, J. W. Simons, and A. M. De Marzo, “Up-regulation of hypoxia-inducible factor 1α is an early event in prostate carcinogenesis,” Cancer Detection and Prevention, vol. 28, no. 2, pp. 88–93, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. J. Gray, J. Zhang, L. M. Ellis et al., “HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas,” Oncogene, vol. 24, no. 19, pp. 3110–3120, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Benhar, I. Dalyot, D. Engelberg, and A. Levitzki, “Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress,” Molecular and Cellular Biology, vol. 21, no. 20, pp. 6913–6926, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. Ricote, I. García-Tuñón, F. Bethencourt et al., “The p38 transduction pathway in prostatic neoplasia,” Journal of Pathology, vol. 208, no. 3, pp. 401–407, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. W. Hay, L. A. Ferguson, and K. Docherty, “ATF-2 stimulates the human insulin promoter through the conserved CRE2 sequence,” Biochimica et Biophysica Acta, vol. 1769, no. 2, pp. 79–91, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. M. Lowe, H. Cha, Q. Yang, and A. J. Fornace, “Nuclear factor-κB (NF-κB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase,” Journal of Biological Chemistry, vol. 285, no. 8, pp. 5249–5257, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. L. R. Merry, S. L. Bullock, D. C. Swan et al., “The molecular phenotype of heparan sulfate in the Hs2st/ mutant mouse,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35429–35434, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. Kobayashi, H. Habuchi, K. Tamura, H. Ide, and K. Kimata, “Essential Role of heparan sulfate 2-O-sulfotransferase in chick limb bud patterning and development,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19589–19597, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Zellweger, C. Ninck, M. Mirlacher et al., “Tissue microarray analysis reveals prognostic significance of syndecan-I expression in prostate cancer,” Prostate, vol. 55, no. 1, pp. 20–29, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus