Table of Contents Author Guidelines Submit a Manuscript
Prostate Cancer
Volume 2012, Article ID 137163, 8 pages
http://dx.doi.org/10.1155/2012/137163
Research Article

Histone Deacetylase Inhibitors Restore Cell Surface Expression of the Coxsackie Adenovirus Receptor and Enhance CMV Promoter Activity in Castration-Resistant Prostate Cancer Cells

Department of Microbiology & Immunology, Medical University of South Carolina, P.O. Box 250504, 173 Ashley Avenue, Charleston, SC 29403, USA

Received 21 June 2011; Accepted 27 September 2011

Academic Editor: Katsuto Shinohara

Copyright © 2012 Laura Kasman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Villar-Garea and M. Esteller, “Histone deacetylase inhibitors: understanding a new wave of anticancer agents,” International Journal of Cancer, vol. 112, no. 2, pp. 171–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Piekarz and S. Bates, “A review of depsipeptide and other histone deacetylase inhibitors in clinical trials,” Current Pharmaceutical Design, vol. 10, no. 19, pp. 2289–2298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Kasman, P. Lu, and C. Voelkel-Johnson, “The histone deacetylase inhibitors depsipeptide and MS-275, enhance TRAIL gene therapy of LNCaP prostate cancer cells without adverse effects in normal prostate epithelial cells,” Cancer Gene Therapy, vol. 14, no. 3, pp. 327–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Holoch and T. S. Griffith, “TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies,” European Journal of Pharmacology, vol. 625, no. 1–3, pp. 63–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. N. Thalmann, P. E. Anezinis, S. M. Chang et al., “Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer,” Cancer Research, vol. 54, no. 10, pp. 2577–2581, 1994. View at Google Scholar · View at Scopus
  6. C. Voelkel-Johnson, D. L. King, and J. S. Norris, “Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL,” Cancer Gene Therapy, vol. 9, no. 2, pp. 164–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Anees, P. Horak, A. El-Gazzar et al., “Recurrence-free survival in prostate cancer is related to increased stromal TRAIL expression,” Cancer, vol. 117, no. 6, pp. 1172–1182, 2011. View at Publisher · View at Google Scholar
  8. J. M. Bergelson, J. A. Cunningham, G. Droguett et al., “Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5,” Science, vol. 275, no. 5304, pp. 1320–1323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Meier and U. F. Greber, “Adenovirus endocytosis,” Journal of Gene Medicine, vol. 5, no. 6, pp. 451–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Rauen, D. Sudilovsky, J. L. Le et al., “Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy,” Cancer Research, vol. 62, no. 13, pp. 3812–3818, 2002. View at Google Scholar · View at Scopus
  11. C. B. Coyne and J. M. Bergelson, “CAR: a virus receptor within the tight junction,” Advanced Drug Delivery Reviews, vol. 57, no. 6, pp. 869–882, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Pong, Y. J. Lai, H. Chen et al., “Epigenetic regulation of coxsackie and adenovirus receptor (CAR) gene promoter in urogenital cancer cells,” Cancer Research, vol. 63, no. 24, pp. 8680–8686, 2003. View at Google Scholar · View at Scopus
  13. J. L. Kovar, M. A. Johnson, W. M. Volcheck, J. Chen, and M. A. Simpson, “Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model,” American Journal of Pathology, vol. 169, no. 4, pp. 1415–1426, 2006. View at Publisher · View at Google Scholar
  14. J. L. Kovar, M. A. Johnson, W. M. Volcheck, J. Chen, and M. A. Simpson, “Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model,” American Journal of Pathology, vol. 169, no. 4, pp. 1415–1426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. VanOosten, J. M. Moore, A. T. Ludwig, and T. S. Griffith, “Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts,” Molecular Therapy, vol. 11, no. 4, pp. 542–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Lai, C. S. Chen, C. R. Yang et al., “An HDAC inhibitor enhances the antitumor activity of a CMV promoter-driven DNA vaccine,” Cancer Gene Therapy, vol. 17, no. 3, pp. 203–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Barua and K. Rege, “The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer-plasmid DNA complexes,” Biomaterials, vol. 31, no. 22, pp. 5894–5902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Danielsson, H. Dzojic, V. Rashkova, W. -S. Cheng, and M. Essand, “The HDAC inhibitor FK228 enhances adenoviral transgene expression by a transduction-independent mechanism but does not increase adenovirus replication,” PLoS One, vol. 6, no. 2, Article ID e14700, 2011. View at Publisher · View at Google Scholar
  19. L. G. Wooten-Blanks, P. Song, C. E. Senkal, and B. Ogretmen, “Mechanisms of ceramide-mediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1,” FASEB Journal, vol. 21, no. 12, pp. 3386–3397, 2007. View at Publisher · View at Google Scholar · View at Scopus