Table of Contents Author Guidelines Submit a Manuscript
Prostate Cancer
Volume 2014 (2014), Article ID 104248, 10 pages
http://dx.doi.org/10.1155/2014/104248
Research Article

Pharmacokinetic and Biodistribution Assessment of a Near Infrared-Labeled PSMA-Specific Small Molecule in Tumor-Bearing Mice

1Translational Research, LI-COR Biosciences, 4647 Superior Street, Lincoln, NE 68504, USA
2Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
3SVS Consulting, Lincoln, NE 68516, USA

Received 26 December 2013; Revised 17 February 2014; Accepted 7 March 2014; Published 7 April 2014

Academic Editor: William L. Dahut

Copyright © 2014 Joy L. Kovar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Imai and A. Takaoka, “Comparing antibody and small-molecule therapies for cancer,” Nature Reviews Cancer, vol. 6, no. 9, pp. 714–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. S. Israeli, C. T. Powell, J. G. Corr, W. R. Fair, and W. D. W. Heston, “Expression of the prostate-specific membrane antigen,” Cancer Research, vol. 54, no. 7, pp. 1807–1811, 1994. View at Google Scholar · View at Scopus
  4. D. A. Silver, I. Pellicer, W. R. Fair, W. D. W. Heston, and C. Cordon-Cardo, “Prostate-specific membrane antigen expression in normal and malignant human tissues,” Clinical Cancer Research, vol. 3, no. 1, pp. 81–85, 1997. View at Google Scholar · View at Scopus
  5. J. J. Futterer and J. O. Barentsz, “MRI-guided and robotic-assisted prostate biopsy,” Current Opinion in Urology, vol. 22, pp. 316–319, 2012. View at Google Scholar
  6. M. J. Manyak, “Indium-111 capromab pendetide in the management of recurrent prostate cancer,” Expert Review of Anticancer Therapy, vol. 8, no. 2, pp. 175–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Gregorakis, E. H. Holmes, and G. P. Murphy, “Prostate-specific membrane antigen: current and future utility,” Seminars in Urologic Oncology, vol. 16, no. 1, pp. 2–12, 1998. View at Google Scholar · View at Scopus
  8. S. R. Banerjee, M. Pullambhatla, Y. Byun et al., “Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen,” Angewandte Chemie—International Edition, vol. 50, no. 39, pp. 9167–9170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer,” Breast Cancer, vol. 12, no. 3, pp. 211–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Tagaya, R. Yamazaki, A. Nakagawa et al., “Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer,” The American Journal of Surgery, vol. 195, no. 6, pp. 850–853, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. G. T. Terwisscha van Scheltinga, G. M. van Dam, W. B. Nagengast et al., “Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies,” Journal of Nuclear Medicine, vol. 52, no. 11, pp. 1778–1785, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Annals of Surgical Oncology, vol. 15, no. 5, pp. 1271–1272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. van Dam, G. Themelis, L. M. A. Crane et al., “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nature Medicine, vol. 17, no. 10, pp. 1315–1319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. M. A. Crane, G. Themelis, R. G. Pleijhuis et al., “Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept,” Molecular Imaging and Biology, vol. 13, no. 5, pp. 1043–1049, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Laydner, S. S. Huang, W. D. Heston et al., “Robotic real-time near infrared targeted fluorescence imaging in a murine model of prostate cancer: a feasibility study,” Urology, vol. 81, pp. 451–456, 2013. View at Google Scholar
  16. N. S. van den Berg, O. R. Brouwer, W. M. C. Klop et al., “Concomitant radio- and fluorescence-guided sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity using ICG-(99m)Tc-nanocolloid,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, pp. 1128–1136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. van Leeuwen, T. Buckle, G. Bendle et al., “Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model,” Journal of Biomedical Optics, vol. 16, no. 1, Article ID 016004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tobis, J. Knopf, C. Silvers et al., “Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors,” The Journal of Urology, vol. 186, no. 1, pp. 47–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Achilefu, S. Bloch, M. A. Markiewicz et al., “Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7976–7981, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. H. Heath, N. L. Deep, L. Sweeny, K. R. Zinn, and E. L. Rosenthal, “Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model,” Annals of Surgical Oncology, vol. 19, pp. 3879–3887, 2012. View at Google Scholar
  21. S. S. Chang, V. E. Reuter, W. D. W. Heston, N. H. Bander, L. S. Grauer, and P. B. Gaudin, “Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature,” Cancer Research, vol. 59, no. 13, pp. 3192–3198, 1999. View at Google Scholar · View at Scopus
  22. U. Elsässer-Beile, P. Bühler, and P. Wolf, “Targeted therapies for Prostate cancer against the prostate specific membrane antigen,” Current Drug Targets, vol. 10, no. 2, pp. 118–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Liu, A. K. Rajasekaran, P. Moy et al., “Constitutive and antibody-induced internalization of prostate-specific membrane antigen,” Cancer Research, vol. 58, no. 18, pp. 4055–4060, 1998. View at Google Scholar · View at Scopus
  24. J. R. Osborne, N. H. Akhtar, S. Vallabhajosula, A. Anand, K. Deh, and S. T. Tagawa, “Prostate-specific membrane antigen-based imaging,” Urologic Oncology, vol. 31, pp. 144–154, 2013. View at Google Scholar
  25. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine, vol. 3, no. 5, pp. 703–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Agnes, A. M. Broome, J. Wang, A. Verma, K. Lavik, and J. P. Basilion, “An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor,” Molecular Cancer Therapeutics, vol. 11, pp. 2202–2211, 2012. View at Google Scholar
  27. S. R. Banerjee, C. A. Foss, M. Castanares et al., “Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA),” Journal of Medicinal Chemistry, vol. 51, no. 15, pp. 4504–4517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Chen, S. Dhara, S. R. Banerjee et al., “A low molecular weight PSMA-based fluorescent imaging agent for cancer,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 624–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Chen, M. Pullambhatla, S. R. Banerjee et al., “Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen,” Bioconjugate Chemistry, vol. 23, pp. 2377–2385, 2012. View at Google Scholar
  30. S. A. Kularatne, K. Wang, H.-K. R. Santhapuram, and P. S. Low, “Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 780–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Liu, L. Y. Wu, M. R. Hopkins, J. K. Choi, and C. E. Berkman, “A targeted low molecular weight near-infrared fluorescent probe for prostate cancer,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 23, pp. 7124–7126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Evans, P. M. Smith-Jones, J. Wongvipat et al., “Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 23, pp. 9578–9582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Wang, D. Ma, W. C. Olson, and W. D. W. Heston, “In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen,” Molecular Cancer Therapeutics, vol. 10, no. 9, pp. 1728–1739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Bouchelouche, P. L. Choyke, and J. Capala, “Prostate specific membrane antigen- a target for imaging and therapy with radionuclides,” Discovery Medicine, vol. 9, no. 44, pp. 55–61, 2010. View at Google Scholar · View at Scopus
  35. J. L. Kovar, M. A. Johnson, W. M. Volcheck, J. Chen, and M. A. Simpson, “Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model,” The American Journal of Pathology, vol. 169, no. 4, pp. 1415–1426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Kenanova, T. Olafsen, D. M. Crow et al., “Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments,” Cancer Research, vol. 65, no. 2, pp. 622–631, 2005. View at Google Scholar · View at Scopus
  37. M. Tabrizi, G. G. Bornstein, and H. Suria, “Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease,” AAPS Journal, vol. 12, no. 1, pp. 33–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. J. Bacich, J. T. Pinto, W. P. Tong, and W. D. W. Heston, “Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase,” Mammalian Genome, vol. 12, no. 2, pp. 117–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. P. D. Gregor, J. D. Wolchok, V. Turaga et al., “Induction of autoantibodies to syngeneic prostate-specific membrane antigen by xenogeneic vaccination,” International Journal of Cancer, vol. 116, no. 3, pp. 415–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. K. Troyer, M. L. Beckett, and G. L. Wright Jr., “Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids,” International Journal of Cancer, vol. 62, no. 5, pp. 552–558, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacological Reviews, vol. 51, no. 1, pp. 7–61, 1999. View at Google Scholar · View at Scopus
  42. S. S. Gill and O. M. Pulido, “Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology,” Toxicologic Pathology, vol. 29, no. 2, pp. 208–223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Scheuer, G. M. van Dam, M. Dobosz, M. Schwaiger, and V. Ntziachristos, “Drug-based optical agents: infiltrating clinics at lower risk,” Science Translational Medicine, vol. 4, article 134ps11, 2012. View at Google Scholar
  44. M. Deeter, R. Dorer, M. K. Kuppusamy, R. P. Koehler, and D. E. Low, “Assessment of criteria and clinical significance of circumferential resection margins in esophageal cancer,” Archives of Surgery, vol. 144, no. 7, pp. 618–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. E. Emerson, M. O. Koch, T. D. Jones, J. K. Daggy, B. E. Juliar, and L. Cheng, “The influence of extent of surgical margin positivity on prostate specific antigen recurrence,” Journal of Clinical Pathology, vol. 58, no. 10, pp. 1028–1032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. N. V. Zhukov and S. A. Tjulandin, “Targeted therapy in the treatment of solid tumors: practice contradicts theory,” Biochemistry (Moscow), vol. 73, no. 5, pp. 605–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Wada, N. Sakemura, S. Imoto, T. Hasebe, A. Ochiai, and N. Moriyama, “Sentinel node biopsy in primary breast cancer: radioactive detection and metastatic disease,” European Journal of Surgical Oncology, vol. 33, no. 6, pp. 691–695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. L. M. A. Crane, M. van Oosten, R. G. Pleijhuis et al., “Intraoperative imaging in ovarian cancer: fact or fiction?” Molecular Imaging, vol. 10, no. 4, pp. 248–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. van Oosten, L. M. A. Crane, J. Bart, F. W. van Leeuwen, and G. M. van Dam, “Selecting potential targetable biomarkers for imaging purposes in colorectal cancer using target selection criteria (TASC): a novel target identification tool,” Translational Oncology, vol. 4, no. 2, pp. 71–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Nunn, “The cost of developing imaging agents for routine clinical use,” Investigative Radiology, vol. 41, no. 3, pp. 206–212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. J. Morris, N. Pandit-Taskar, C. R. Divgi et al., “Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors,” Clinical Cancer Research, vol. 13, no. 9, pp. 2707–2713, 2007. View at Publisher · View at Google Scholar · View at Scopus