Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2011, Article ID 746303, 7 pages
http://dx.doi.org/10.4061/2011/746303
Research Article

The On-Freezing Phenomenon: Cognitive and Behavioral Aspects

Medicina Clinica, Ambulatorio Complicanze Internistiche Cerebrali, Dipartimento Universitario Clinici di Scienze Mediche Tecnologiche e Traslazionali, Università degli Studi di Trieste, Ospedale di Cattinara, Strada Fiume 447, 34149 Trieste, Italy

Received 14 November 2010; Revised 6 March 2011; Accepted 20 May 2011

Academic Editor: Irena Rektorova

Copyright © 2011 Rita Moretti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Giladi, D. McMahon, S. Przedborski et al., “Motor blocks in Parkinson's disease,” Neurology, vol. 42, no. 2, pp. 333–339, 1992. View at Google Scholar
  2. N. Giladi, R. Kao, and S. Fahn, “Freezing phenomenon in patients with parkinsonian syndromes,” Movement Disorders, vol. 12, no. 3, pp. 302–305, 1997. View at Publisher · View at Google Scholar · View at PubMed
  3. N. Giladi and S. Fahn, “Freezing phenomenon, the fifth cardinal sign of parkinsonism,” in Progress in Alzheimer's and Parkinson's Diseases, A. Fisher, I. Hanin, and M. Yoshida, Eds., pp. 329–335, Plenum Press, New York, NY, USA, 1998. View at Google Scholar
  4. N. Giladi, “Freezing of gait. Clinical overview,” in Gait Disorders. Advances in Neurology, E. Ruzicka, M. Hallett, and J. Jankovic, Eds., vol. 87, pp. 191–197, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2001. View at Google Scholar
  5. P. Lamberti, S. Armenise, V. Castaldo et al., “Freezing gait in Parkinson's disease,” European Neurology, vol. 38, no. 4, pp. 297–301, 1997. View at Google Scholar
  6. S. Hassin-Baer, P. Sirota, A. D. Korczyn et al., “Clinical characteristics of neuroleptic-induced parkinsonism,” Journal of Neural Transmission, vol. 108, no. 11, pp. 1299–1308, 2001. View at Publisher · View at Google Scholar
  7. S. Fahn, “Parkinsonism,” in Merritt's Textbook of Neurology, L. Rowland, Ed., pp. 123–137, Lea & Febiger, Philadelphia, Pa, USA, 1994. View at Google Scholar
  8. H. Narabayashi, H. Imai, and M. Yokochi, “Cases of pure akinesia without rigidity and tremor and with no effect by L-Dopa therapy,” in Advances in Parkinsonism, W. Birkmyer and O. Horniekiewicz, Eds., pp. 335–342, Roche, Basel, Switzerland, 1976. View at Google Scholar
  9. H. Imai, H. Narabayashi, and E. Sakata, “‘Pure akinesia’ and the later added supranuclear ophthalmoplegia,” Advances in Neurology, vol. 45, pp. 207–212, 1987. View at Google Scholar
  10. Q. J. Almeida and C. A. Lebold, “Freezing of gait in Parkinson's disease: a perceptual cause for a motor impairment?” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 5, pp. 513–518, 2010. View at Publisher · View at Google Scholar · View at PubMed
  11. G. Linazasoro, “The apomorphine test in gait disorders associated with Parkinsonism,” Clinical Neuropharmacology, vol. 19, no. 2, pp. 171–176, 1996. View at Google Scholar
  12. C. D. Marsden, “Slowness of movement in Parkinson's disease,” Movement Disorders, vol. 4, no. 1, pp. S26–S37, 1989. View at Google Scholar
  13. R. Schwab, A. England, and E. Peterson, “Akinesia in Parkinson's disease,” Neurology, vol. 9, pp. 65–72, 1959. View at Google Scholar
  14. M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967. View at Google Scholar
  15. N. Giladi, V. Huber-Mahlin, T. Herman, and J. M. Hausdorff, “Freezing of gait in older adults with high level gait disorders: association with impaired executive function,” Journal of Neural Transmission, vol. 114, no. 10, pp. 1349–1353, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. J. M. Hausdorff, J. D. Schaafsma, Y. Balash, A. L. Bartels, T. Gurevich, and N. Giladi, “Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait,” Experimental Brain Research, vol. 149, no. 2, pp. 187–194, 2003. View at Google Scholar
  17. A. Nieuwboer, W. De Weerdt, R. Dom et al., “Plantar force distribution in Parkinsonian gait: a comparison between patients and age-matched control subjects,” Scandinavian Journal of Rehabilitation Medicine, vol. 31, no. 3, pp. 185–192, 1999. View at Google Scholar
  18. A. Nieuwboer, R. Dom, W. De Weerdt, K. Desloovere, S. Fieuws, and E. Broens-Kaucsik, “Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease,” Movement Disorders, vol. 16, no. 6, pp. 1066–1075, 2001. View at Publisher · View at Google Scholar · View at PubMed
  19. A. Nieuwboer, R. Dom, W. De Weerdt, K. Desloovere, L. Janssens, and V. Stijn, “Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson's disease,” Brain, vol. 127, no. 7, pp. 1650–1660, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. Q. J. Almeida, J. S. Frank, E. A. Roy et al., “An evaluation of sensorimotor integration during locomotion toward a target in Parkinson's disease,” Neuroscience, vol. 134, no. 1, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. Q. J. Almeida, J. S. Frank, E. A. Roy, A. E. Patla, and M. S. Jog, “Dopaminergic modulation of timing control and variability in the gait of Parkinson's disease,” Movement Disorders, vol. 22, no. 12, pp. 1735–1742, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. A. M. Johnson, Q. J. Almeida, C. Stough, J. C. Thompson, R. Singarayer, and M. S. Jog, “Visual inspection time in Parkinson's disease: deficits in early stages of cognitive processing,” Neuropsychologia, vol. 42, no. 5, pp. 577–583, 2004. View at Publisher · View at Google Scholar
  23. C. Gurvich, N. Georgiou-Karistianis, P. B. Fitzgerald, L. Millist, and O. B. White, “Inhibitory control and spatial working memory in Parkinson's disease,” Movement Disorders, vol. 22, no. 10, pp. 1444–1450, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. A. C. Lee and J. P. Harris, “Problems with perception of space in Parkinson's disease: a questionnaire study,” Neuro-Ophthalmology, vol. 22, no. 1, pp. 1–15, 1999. View at Google Scholar
  25. C. D. Marsden and J. A. Obeso, “The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease,” Brain, vol. 117, no. 4, pp. 877–897, 1994. View at Google Scholar
  26. C. G. Goetz, W. Poewe, O. Rascol et al., “Movement disorder society task force report on the hoehn and yahr staging scale: status and recommendations,” Movement Disorders, vol. 19, no. 9, pp. 1020–1028, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. S. Fahn, R. L. Elton, and The Members of the UPDRS Development Committee, “The unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, D. B. Calne, and M. Goldstein, Eds., vol. 2, pp. 153–163, Macmillan Healthcare, Florham Park, NJ, USA, 1987. View at Google Scholar
  28. G. G. Briggs and R. D. Nebes, “Patterns of hand preference in a student population,” Cortex, vol. 11, no. 3, pp. 230–238, 1975. View at Google Scholar
  29. A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 3, pp. 181–184, 1992. View at Google Scholar
  30. J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal of Experimental Psychology, vol. 18, no. 6, pp. 643–662, 1935. View at Publisher · View at Google Scholar
  31. J. C. Raven, Standard Progressive Matrices, Lewis, London, UK, 1938.
  32. D. Wechsler, Wechsler Adult Intelligence Scale Manual-R, Grune & Stratton, New York, NY, USA, 1981.
  33. R. M. Reitan and D. Wolfson, The Halstead Reitan Neuropsychological Test Battery; Theory and Clinical Interpretation, Neuropsychological Press, Tucson, Ariz, USA, 1985.
  34. D. R. Gorham, The Proverbs Test, Psychol Rep Monogr, Missoula, Mont, USA, 1956.
  35. P. J. Manos and R. Wu, “The ten point clock test: a quick screen and grading method for cognitive impairment in medical and surgical patients,” International Journal of Psychiatry in Medicine, vol. 24, no. 3, pp. 229–244, 1994. View at Google Scholar
  36. D. Wechsler, “A standardized memory scale for clinical use,” The Journal of Psychology, vol. 19, pp. 87–97, 1945. View at Google Scholar
  37. B. R. Ott, G. Lafleche, W. M. Whelihan, G. W. Buongiorno, M. S. Albert, and B. S. Fogel, “Impaired awareness of deficits in Alzheimer's disease,” Alzheimer Disease and Associated Disorders, vol. 10, no. 2, pp. 68–76, 1996. View at Publisher · View at Google Scholar
  38. G. S. Alexopoulos, R. C. Abrams, R. C. Young, and C. A. Shamoian, “Cornell scale for depression in dementia,” Biological Psychiatry, vol. 23, no. 3, pp. 271–284, 1988. View at Google Scholar
  39. R. Iansek, F. Huxham, and J. McGinley, “The sequence effect and gait festination in parkinson disease: contributors to freezing of gait?” Movement Disorders, vol. 21, no. 9, pp. 1419–1424, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. R. Moretti, P. Torre, and R. M. Antonello, Basal Ganglia: Functional and Organic Roles in Behaviour and Cognition, Nova Editorial, New York, NY, USA, 2009.
  41. R. Iansek, J. L. Bradshaw, J. G. Phillips, R. Cunnington, and M. E. Morris, “Interaction of the basal ganglia and supplementary motor area in the elaboration of movement,” in Motor Control and Sensorimotor Integration, D. J. Glencross and J. P. Piek, Eds., pp. 37–59, Elsevier Science, Amsterdam, The Netherlands, 1995. View at Google Scholar
  42. S. J. G. Lewis and R. A. Barker, “A pathophysiological model of freezing of gait in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 15, no. 5, pp. 333–338, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. N. Fabre, C. Brefel, U. Sabatini et al., “Normal frontal perfusion in patients with frozen gait,” Movement Disorders, vol. 13, no. 4, pp. 677–683, 1998. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Camicioli, B. S. Oken, G. Sexton, J. A. Kaye, and J. G. Nutt, “Verbal fluency task affects gait in Parkinson's disease with motor freezing,” Journal of Geriatric Psychiatry and Neurology, vol. 11, no. 4, pp. 181–185, 1998. View at Google Scholar
  45. H. Matsui, F. Ukada, T. Miyoshi et al., “Three-dimensional stereotactic surface projection study of freezing of gait and brain perfusion image in Parkinson's disease,” Movement Disorders, vol. 20, no. 10, pp. 1272–1277, 2005. View at Publisher · View at Google Scholar · View at PubMed
  46. A. L. Bartels, B. M. de Jong, N. Giladi et al., “Striatal dopa and glucose metabolism in PD patients with freezing of gait,” Movement Disorders, vol. 21, no. 9, pp. 1326–1332, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. S. L. Naismith, J. M. Shine, and S. J. G. Lewis, “The specific contributions of set-shifting to freezing of gait in Parkinson's disease,” Movement Disorders, vol. 25, no. 8, pp. 1000–1004, 2010. View at Publisher · View at Google Scholar · View at PubMed
  48. C. H. Williams-Gray, A. Hampshire, R. A. Barker, and A. M. Owen, “Attentional control in Parkinson's disease is dependent on COMT val 158 met genotype,” Brain, vol. 131, no. 2, pp. 397–408, 2008. View at Publisher · View at Google Scholar · View at PubMed
  49. A. Hampshire and A. M. Owen, “Fractionating attentional control using event-related fMRI,” Cerebral Cortex, vol. 16, no. 12, pp. 1679–1689, 2006. View at Publisher · View at Google Scholar · View at PubMed
  50. K. Kompoliti, C. G. Goetz, S. Leurgans, M. Morrissey, and I. M. Siegel, “On freezing in Parkinson's disease: resistance to visual cue walking devices,” Movement Disorders, vol. 15, no. 2, pp. 309–312, 2000. View at Publisher · View at Google Scholar
  51. R. Cunnington, R. Iansek, and J. L. Bradshaw, “Movement-related potentials in Parkinson's disease: external cues and attentional strategies,” Movement Disorders, vol. 14, no. 1, pp. 63–68, 1999. View at Publisher · View at Google Scholar
  52. R. Chee, A. Murphy, M. Danoudis, N. Georgiou-Karistianis, and R. Iansek, “Gait freezing in Parkinson's disease and the stride length sequence effect interaction,” Brain, vol. 132, no. 8, pp. 2151–2160, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. G. Chari, P. J. Shaw, and A. Sahgal, “Nonverbal visual attention, but not recognition memory or learning, processes are impaired in motor neurone disease,” Neuropsychologia, vol. 34, no. 5, pp. 377–385, 1996. View at Publisher · View at Google Scholar
  54. J. Gottlieb and M. E. Goldberg, “Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task,” Nature Neuroscience, vol. 2, no. 10, pp. 906–912, 1999. View at Publisher · View at Google Scholar · View at PubMed
  55. K. D. Powell and M. E. Goldberg, “Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade,” Journal of Neurophysiology, vol. 84, no. 1, pp. 301–310, 2000. View at Google Scholar
  56. C. W. Wallesch and C. Papagno, “Subcortical aphasia,” in Aphasia, F. C. Rose, R. Whurr, and M. Wyke, Eds., pp. 257–287, Whurr, London, UK, 1988. View at Google Scholar
  57. J. L. Cummings, “Anatomic and behavioral aspects of frontal-subcortical circuits,” Annals of the New York Academy of Sciences, vol. 769, pp. 1–13, 1995. View at Publisher · View at Google Scholar
  58. C. J. Stam, S. L. Visser, A. A. W. Op de Coul et al., “Disturbed frontal regulation of attention in Parkinson's disease,” Brain, vol. 116, no. 5, pp. 1139–1158, 1993. View at Google Scholar