Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2015, Article ID 571475, 9 pages
http://dx.doi.org/10.1155/2015/571475
Review Article

Potential of Neural Stem Cell-Based Therapy for Parkinson’s Disease

1Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
2Tung’s Taichung MetroHarbor Hospital, Wuchi, Taichung, Taiwan
3Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan

Received 25 June 2015; Accepted 3 November 2015

Academic Editor: Peter Hagell

Copyright © 2015 Chung-Hsing Chou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Lees, “Unresolved issues relating to the shaking palsy on the celebration of James Parkinson’s 250th birthday,” Movement Disorders, vol. 22, supplement 17, pp. S327–S334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. de Lau and M. M. Breteler, “Epidemiology of Parkinson’s disease,” The Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Savica, W. A. Rocca, and J. E. Ahlskog, “When does Parkinson disease start?” Archives of Neurology, vol. 67, no. 7, pp. 798–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Suksuphew and P. Noisa, “Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases,” World Journal of Stem Cells, vol. 7, no. 2, pp. 502–511, 2015. View at Publisher · View at Google Scholar
  5. G.-L. Ming and H. Song, “Adult neurogenesis in the mammalian brain: significant answers and significant questions,” Neuron, vol. 70, no. 4, pp. 687–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Kempermann, H. G. Kuhn, and F. H. Gage, “Genetic influence on neurogenesis in the dentate gyrus of adult mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10409–10414, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Luo, S. B. Daniels, J. B. Lennington, R. Q. Notti, and J. C. Conover, “The aging neurogenic subventricular zone,” Aging Cell, vol. 5, no. 2, pp. 139–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. O. Suhonen, D. A. Peterson, J. Ray, and F. H. Gage, “Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo,” Nature, vol. 383, no. 6601, pp. 624–627, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Nakagomi, T. Nakagomi, S. Kubo et al., “Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction,” Stem Cells, vol. 27, no. 9, pp. 2185–2195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kojima, Y. Hirota, M. Ema et al., “Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum,” Stem Cells, vol. 28, no. 3, pp. 545–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-H. Chou, J. D. Sinden, P.-O. Couraud, and M. Modo, “In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells,” PLoS ONE, vol. 9, no. 9, Article ID e106346, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Suh, W. Deng, and F. H. Gage, “Signaling in adult neurogenesis,” Annual Review of Cell and Developmental Biology, vol. 25, pp. 253–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Tavazoie, L. Van der Veken, V. Silva-Vargas et al., “A specialized vascular niche for adult neural stem cells,” Cell Stem Cell, vol. 3, no. 3, pp. 279–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. V. Gómez-Gaviro, R. Lovell-Badge, F. Fernández-Avilés, and E. Lara-Pezzi, “The vascular stem cell niche,” Journal of Cardiovascular Translational Research, vol. 5, no. 5, pp. 618–630, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Kazanis and C. Ffrench-Constant, “Extracellular matrix and the neural stem cell niche,” Developmental Neurobiology, vol. 71, no. 11, pp. 1006–1017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Mercier, J. T. Kitasako, and G. I. Hatton, “Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network,” Journal of Comparative Neurology, vol. 451, no. 2, pp. 170–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kerever, J. Schnack, D. Vellinga et al., “Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu,” Stem Cells, vol. 25, no. 9, pp. 2146–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. G. Nutt and G. F. Wooten, “Clinical practice. Diagnosis and initial management of Parkinson’s disease,” The New England Journal of Medicine, vol. 353, no. 10, pp. 1021–1027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson’s disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Rappold and K. Tieu, “Astrocytes and therapeutics for Parkinson’s disease,” Neurotherapeutics, vol. 7, no. 4, pp. 413–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. M. Tanner, F. Kame, G. W. Ross et al., “Rotenone, paraquat, and Parkinson’s disease,” Environmental Health Perspectives, vol. 119, no. 6, pp. 866–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Lee and I. S. Pienaar, “Disruption of the blood-brain barrier in Parkinson’s disease: curse or route to a cure?” Frontiers in Bioscience (Landmark Edition), vol. 19, no. 2, pp. 272–280, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Jangula and E. J. Murphy, “Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression,” Neuroscience Letters, vol. 551, pp. 23–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Cabezas, M. Avila, J. Gonzalez, R. S. El-Bacha, E. Baez, L. M. Garcia-Segura et al., “Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease,” Frontiers in Cellular Neuroscience, vol. 8, article 211, 2014. View at Publisher · View at Google Scholar
  25. J. H. Zhang, J. Badaut, J. Tang, A. Obenaus, R. Hartman, and W. J. Pearce, “The vascular neural network—a new paradigm in stroke pathophysiology,” Nature Reviews Neurology, vol. 8, no. 12, pp. 711–716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. V. I. Cohen, G. Bonvento, P. Lacombe, and E. Hamel, “Serotonin in the regulation of brain microcirculation,” Progress in Neurobiology, vol. 50, no. 4, pp. 335–362, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Lok, P. Gupta, S. Guo et al., “Cell-cell signaling in the neurovascular unit,” Neurochemical Research, vol. 32, no. 12, pp. 2032–2045, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. T. Drake and C. Iadecola, “The role of neuronal signaling in controlling cerebral blood flow,” Brain and Language, vol. 102, no. 2, pp. 141–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Fenstermacher, P. Gross, N. Sposito, V. Acuff, S. Pettersen, and K. Gruber, “Structural and functional variations in capillary systems within the brain,” Annals of the New York Academy of Sciences, vol. 529, pp. 21–30, 1988. View at Publisher · View at Google Scholar · View at Scopus
  30. W. H. Oldendorf, M. E. Cornford, and W. J. Brown, “The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat,” Annals of Neurology, vol. 1, no. 5, pp. 409–417, 1977. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Sedlakova, R. R. Shivers, and R. F. Del Maestro, “Ultrastructure of the blood-brain barrier in the rabbit,” Journal of Submicroscopic Cytology and Pathology, vol. 31, no. 1, pp. 149–161, 1999. View at Google Scholar · View at Scopus
  32. U. Kniesel and H. Wolburg, “Tight junctions of the blood-brain barrier,” Cellular and Molecular Neurobiology, vol. 20, no. 1, pp. 57–76, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Tagami, Y. Nara, A. Kubota, H. Fujino, and Y. Yamori, “Ultrastructural changes in cerebral pericytes and astrocytes of stroke-prone spontaneously hypertensive rats,” Stroke, vol. 21, no. 7, pp. 1064–1071, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Ruoslahti, “Brain extracellular matrix,” Glycobiology, vol. 6, no. 5, pp. 489–492, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Yamaguchi, “Lecticans: organizers of the brain extracellular matrix,” Cellular and Molecular Life Sciences, vol. 57, no. 2, pp. 276–289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Timpl, “Structure and biological activity of basement membrane proteins,” European Journal of Biochemistry, vol. 180, no. 3, pp. 487–502, 1989. View at Publisher · View at Google Scholar · View at Scopus
  37. P. D. Yurchenco and B. L. Patton, “Developmental and pathogenic mechanisms of basement membrane assembly,” Current Pharmaceutical Design, vol. 15, no. 12, pp. 1277–1294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. Watters, S. Rom, J. D. Hill et al., “Identification and dynamic regulation of tight junction protein expression in human neural stem cells,” Stem Cells and Development, vol. 24, no. 12, pp. 1377–1389, 2015. View at Publisher · View at Google Scholar
  39. E. Kokovay, S. Goderie, Y. Wang et al., “Adult svz lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell, vol. 7, no. 2, pp. 163–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Temple, “Division and differentiation of isolated CNS blast cells in microculture,” Nature, vol. 340, no. 6233, pp. 471–473, 1989. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Thored, A. Arvidsson, E. Cacci et al., “Persistent production of neurons from adult brain stem cells during recovery after stroke,” Stem Cells, vol. 24, no. 3, pp. 739–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Pastrana, L.-C. Cheng, and F. Doetsch, “Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 15, pp. 6387–6392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Snapyan, M. Lemasson, M. S. Brill et al., “Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling,” Journal of Neuroscience, vol. 29, no. 13, pp. 4172–4188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. U. Höglinger, P. Rizk, M. P. Muriel et al., “Dopamine depletion impairs precursor cell proliferation in Parkinson disease,” Nature Neuroscience, vol. 7, no. 7, pp. 726–735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. S. O’Sullivan, M. Johnson, D. R. Williams et al., “The effect of drug treatment on neurogenesis in Parkinson’s disease,” Movement Disorders, vol. 26, no. 1, pp. 45–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. A. van den Berge, M. E. van Strien, J. A. Korecka et al., “The proliferative capacity of the subventricular zone is maintained in the Parkinsonian brain,” Brain, vol. 134, no. 11, pp. 3249–3263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Garcia-Reitboeck, O. Anichtchik, J. W. Dalley et al., “Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra,” Experimental Neurology, vol. 248, pp. 541–545, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Herken, W. Gotz, and K.-H. Wattjes, “Initial development of capillaries in the neuroepithelium of the mouse,” Journal of Anatomy, vol. 164, pp. 85–92, 1989. View at Google Scholar · View at Scopus
  49. A. Vasudevan, J. E. Long, J. E. Crandall, J. L. R. Rubenstein, and P. G. Bhide, “Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain,” Nature Neuroscience, vol. 11, no. 4, pp. 429–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Carmeliet, “Angiogenesis in health and disease,” Nature Medicine, vol. 9, no. 6, pp. 653–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. J. M. James and Y.-S. Mukouyama, “Neuronal action on the developing blood vessel pattern,” Seminars in Cell and Developmental Biology, vol. 22, no. 9, pp. 1019–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Stone, A. Itin, T. Alon et al., “Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia,” Journal of Neuroscience, vol. 15, no. 7 I, pp. 4738–4747, 1995. View at Google Scholar · View at Scopus
  54. R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. P. A. Stewart and M. J. Wiley, “Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras,” Developmental Biology, vol. 84, no. 1, pp. 183–192, 1981. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. James, C. Gewolb, and V. L. Bautch, “Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube,” Development, vol. 136, no. 5, pp. 833–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Kefalopoulou, I. Aviles-Olmos, and T. Foltynie, “Critical aspects of clinical trial design for novel cell and gene therapies,” Parkinson’s Disease, vol. 2011, Article ID 804041, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. R. Freed, P. E. Greene, R. E. Breeze et al., “Transplantation of embryonic dopamine neurons for severe Parkinson’s disease,” The New England Journal of Medicine, vol. 344, no. 10, pp. 710–719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. C. W. Olanow, C. G. Goetz, J. H. Kordower et al., “A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease,” Annals of Neurology, vol. 54, no. 3, pp. 403–414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. J.-Y. Li, E. Englund, J. L. Holton et al., “Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation,” Nature Medicine, vol. 14, no. 5, pp. 501–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Ma, C. Tang, T. Chaly et al., “Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-FDOPA PET outcomes,” Journal of Nuclear Medicine, vol. 51, no. 1, pp. 7–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Ishikawa, N. Tajiri, K. Shinozuka et al., “Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation,” Stroke, vol. 44, no. 12, pp. 3473–3481, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. G. H. Petit, T. T. Olsson, and P. Brundin, “The future of cell therapies and brain repair: Parkinson’s disease leads the way,” Neuropathology and Applied Neurobiology, vol. 40, no. 1, pp. 60–70, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. S. U. Kim, H. J. Lee, and Y. B. Kim, “Neural stem cell-based treatment for neurodegenerative diseases,” Neuropathology, vol. 33, no. 5, pp. 491–504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Misra, M. M. Ritchie, L. L. Stone, W. C. Low, and V. Janardhan, “Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy,” Neurology, vol. 79, no. 13, pp. S207–S212, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Deng, Y. Liang, H. Lu et al., “Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson’s disease,” PLoS ONE, vol. 8, no. 12, Article ID e80880, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Xia, C. Jiang, Z. Cao, K. Shi, and Y. Wang, “Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinson’s disease,” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 1, pp. 7–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. M. C. L. Pereira, M. Secco, D. E. Suzuki et al., “Contamination of mesenchymal stem-cells with fibroblasts accelerates neurodegeneration in an experimental model of Parkinson’s diseas,” Stem Cell Reviews and Reports, vol. 7, no. 4, pp. 1006–1017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Timmer, F. Müller-Ostermeyer, V. Kloth, C. Winkler, C. Grothe, and G. Nikkhah, “Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms,” Experimental Neurology, vol. 187, no. 1, pp. 118–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. A. V. Pendharkar, J. Y. Chua, R. H. Andres et al., “Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia,” Stroke, vol. 41, no. 9, pp. 2064–2070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Ambasudhan, N. Dolatabadi, A. Nutter, E. Masliah, S. R. McKercher, and S. A. Lipton, “Potential for cell therapy in Parkinson’s disease using genetically programmed human embryonic stem cell-derived neural progenitor cells,” Journal of Comparative Neurology, vol. 522, no. 12, pp. 2845–2856, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. D. E. Redmond Jr., K. B. Bjugstad, Y. D. Teng et al., “Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12175–12180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. G. El-Akabawy, L. M. Medina, A. Jeffries, J. Price, and M. Modo, “Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway,” Stem cells and development, vol. 20, no. 11, pp. 1873–1887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. M. Klein, S. Behrstock, J. McHugh et al., “GDNF delivery using human neural progenitor cells in a rat model of ALS,” Human Gene Therapy, vol. 16, no. 4, pp. 509–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. J. D. Glass, N. M. Boulis, K. Johe et al., “Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients,” STEM CELLS, vol. 30, no. 6, pp. 1144–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Park, S. S. Joo, T. K. Kim et al., “Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals,” Cell Transplantation, vol. 21, no. 1, pp. 365–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. E. J. Smith, R. P. Stroemer, N. Gorenkova et al., “Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke,” Stem Cells, vol. 30, no. 4, pp. 785–796, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. H. J. Lee, K. S. Kim, E. J. Kim et al., “Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model,” STEM CELLS, vol. 25, no. 5, pp. 1204–1212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. H.-C. Fan, S.-J. Chen, H.-J. Harn, and S.-Z. Lin, “Parkinson’s disease: from genetics to treatments,” Cell Transplantation, vol. 22, no. 4, pp. 639–652, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Stephenson, L. Jacquet, C. Miere et al., “Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment,” Nature Protocols, vol. 7, no. 7, pp. 1366–1381, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. R. J. Thomas, A. D. Hope, P. Hourd et al., “Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line,” Biotechnology Letters, vol. 31, no. 8, pp. 1167–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Pollock, P. Stroemer, S. Patel et al., “A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke,” Experimental Neurology, vol. 199, no. 1, pp. 143–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. G. S. Mack, “ReNeuron and StemCells get green light for neural stem cell trials,” Nature Biotechnology, vol. 29, no. 2, pp. 95–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Darsalia, S. J. Allison, C. Cusulin et al., “Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 235–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. C. Vernon, E. J. Smith, L. Stevanato, and M. Modo, “Selective activation of metabotropic glutamate receptor 7 induces inhibition of cellular proliferation and promotes astrocyte differentiation of ventral mesencephalon human neural stem/progenitor cells,” Neurochemistry International, vol. 59, no. 3, pp. 421–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Brundin, O. Pogarell, P. Hagell et al., “Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease,” Brain, vol. 123, part 7, pp. 1380–1390, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Piccini, N. Pavese, P. Hagell et al., “Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease,” Brain, vol. 128, no. 12, pp. 2977–2986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Sundberg and O. Isacson, “Advances in stem-cell-generated transplantation therapy for Parkinson’s disease,” Expert Opinion on Biological Therapy, vol. 14, no. 4, pp. 437–453, 2014. View at Publisher · View at Google Scholar · View at Scopus