Table of Contents
Physiology Journal
Volume 2013, Article ID 154327, 7 pages
http://dx.doi.org/10.1155/2013/154327
Research Article

Use of Near Infrared Spectroscopy to Asses Remote Ischemic Preconditioning in Skeletal Muscle

1Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
2Division of Cardiology, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
3Applied Cachexia Research, Department of Cardiology, Charité, Campus Virchow-Klinikum, 13353 Berlin, Germany
4Department of Intensive Care Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia

Received 1 November 2012; Revised 23 January 2013; Accepted 23 January 2013

Academic Editor: Michael S. Wolin

Copyright © 2013 Jana Ambrozic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Ambrosio and I. Tritto, “Reperfusion injury: experimental evidence and clinical implications,” American Heart Journal, vol. 138, no. 2, pp. S69–S75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Daemen, B. de Vries, and W. A. Buurman, “Apoptosis and inflammation in renal reperfusion injury,” Transplantation, vol. 73, no. 11, pp. 1693–1700, 2002. View at Publisher · View at Google Scholar
  3. B. E. Miller and J. H. Levy, “The inflammation response to cardiopulmonary bypass,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 11, no. 3, pp. 355–366, 1997. View at Publisher · View at Google Scholar
  4. R. Ferrari, C. Ceconi, S. Curello, G. Percoco, T. Toselli, and G. Antonioli, “Ischemic preconditioning, myocardial stunning, and hibernation: basic aspects,” American Heart Journal, vol. 138, no. 2, pp. S61–S68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Laude, P. Beauchamp, C. Thuillez, and V. Richard, “Endothelial protective effects of preconditioning,” Cardiovascular Research, vol. 55, no. 3, pp. 466–473, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Przyklenk, B. Bauer, M. Ovize, R. A. Kloner, and P. Whittaker, “Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion,” Circulation, vol. 87, no. 3, pp. 893–899, 1993. View at Google Scholar · View at Scopus
  7. B. Günaydin, I. Cakici, H. Soncul et al., “Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery?” Pharmacological Research, vol. 41, no. 4, pp. 493–496, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. Kharbanda, M. Peters, B. Walton et al., “Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo,” Circulation, vol. 103, no. 12, pp. 1624–1630, 2001. View at Google Scholar · View at Scopus
  9. V. Venugopal, D. J. Hausenloy, A. Ludman et al., “Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial,” Heart, vol. 95, no. 19, pp. 1567–1571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. K. Wu, T. Iivainen, E. Pehkonen, J. Laurikka, and M. R. Tarkka, “Ischemic preconditioning suppresses ventricular tachyarrhythmias after myocardial revascularization,” Circulation, vol. 106, no. 24, pp. 3091–3096, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. T. Costa, S. V. Pierre, M. V. Cohen, J. M. Downey, and K. D. Garlid, “cGMP signalling in pre- and post-conditioning: the role of mitochondria,” Cardiovascular Research, vol. 77, no. 2, pp. 344–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Loukogeorgakis, R. Williams, A. T. Panagiotidou et al., “Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP channel-dependent mechanism,” Circulation, vol. 116, no. 12, pp. 1386–1395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. R. Walsh, T. Tang, U. Sadat, D. P. Dutka, and M. E. Gaunt, “Cardioprotection by remote ischaemic preconditioning,” British Journal of Anaesthesia, vol. 99, no. 5, pp. 611–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. M. Yellon and J. M. Downey, “Preconditioning the myocardium: from cellular physiology to clinical cardiology,” Physiological Reviews, vol. 83, no. 4, pp. 1113–1151, 2003. View at Google Scholar · View at Scopus
  15. H. E. Bøtker, R. Kharbanda, M. R. Schmidt et al., “Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial,” The Lancet, vol. 375, no. 9716, pp. 727–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. H. Cheung, R. K. Kharbanda, I. E. Konstantinov et al., “Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2277–2282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. K. Kharbanda, U. M. Mortensen, P. A. White et al., “Transient limb ischemia induces remote ischemic preconditioning in vivo,” Circulation, vol. 106, no. 23, pp. 2881–2883, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Loukogeorgakis, A. T. Panagiotidou, D. M. Yellon, J. E. Deanfield, and R. J. MacAllister, “Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm,” Circulation, vol. 113, no. 7, pp. 1015–1019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Abozguia, T. T. Phan, G. N. Shivu et al., “Reduced in vivo skeletal muscle oxygen consumption in patients with chronic heart failure-a study using near infrared spectroscopy (NIRS),” European Journal of Heart Failure, vol. 10, no. 7, pp. 652–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Belardinelli, “Monitoring skeletal muscle oxygenation during exercise by near infrared spectroscopy in chronic heart failure,” Congestive Heart Failure, vol. 5, no. 3, pp. 116–124, 1999. View at Google Scholar · View at Scopus
  21. R. A. De Blasi, R. Luciani, G. Punzo et al., “Microcirculatory changes and skeletal muscle oxygenation measured at rest by non-infrared spectroscopy in patients with and without diabetes undergoing haemodialysis,” Critical Care, vol. 13, supplement 5, p. S9, 2009. View at Google Scholar · View at Scopus
  22. R. Parežnik, R. Knezevic, G. Voga, and M. Podbregar, “Changes in muscle tissue oxygenation during stagnant ischemia in septic patients,” Intensive Care Medicine, vol. 32, no. 1, pp. 87–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Podbregar and H. Možina, “Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock,” Critical Care, vol. 11, article R6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Nioka, R. Kime, U. Sunar et al., “A novel method to measure regional muscle blood flow continuously using NIRS kinetics information,” Dynamic Medicine, vol. 5, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. E. Myers, L. D. Anderson, R. P. Seifert et al., “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” Journal of Biomedical Optics, vol. 10, no. 3, Article ID 034017, 2005. View at Google Scholar · View at Scopus
  26. Y. Wickramasinghe and S. A. Spencer, “Quantification of peripheral oxygen consumption by near infrared spectroscopy,” Archives of Disease in Childhood, vol. 89, no. 5, pp. F469–F470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Stout, “Flow-mediated dilatation: a review of techniques and applications,” Echocardiography, vol. 26, no. 7, pp. 832–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Hoole, P. M. Heck, L. Sharples et al., “Cardiac remote ischemic preconditioning in coronary stenting (CRISP Stent) study: a prospective, randomized control trial,” Circulation, vol. 119, no. 6, pp. 820–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. M. C. Kemps, J. J. Prompers, B. Wessels et al., “Skeletal muscle metabolic recovery following submaximal exercise in chronic heart failure is limited more by O2 delivery than O2 utilization,” Clinical Science, vol. 118, no. 3, pp. 203–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Nakayama, S. Iwasaki, H. Ichinose, S. Yamamoto, N. Kanaya, and A. Namiki, “Monitoring of skeletal muscle oxygenation using near-infrared spectroscopy during abdominal aortic surgery,” Journal of Anesthesia, vol. 16, no. 2, pp. 127–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Sanders, I. S. Toor, T. M. Yurik, B. E. Keogh, M. Mythen, and H. E. Montgomery, “Tissue oxygen saturation and outcome after cardiac surgery,” American Journal of Critical Care, vol. 20, no. 2, pp. 138–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. J. Kemp, N. Roberts, W. E. Bimson et al., “Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo,” Journal of Vascular Surgery, vol. 34, no. 6, pp. 1103–1110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Thomson, M. L. Cowan, D. M. Forton et al., “A study of muscle tissue oxygenation and peripheral microcirculatory dysfunction in cirrhosis using near infrared spectroscopy,” Liver International, vol. 30, no. 3, pp. 463–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Grassi, M. Marzorati, F. Lanfranconi et al., “Impaired oxygen extraction in metabolic myopathies: detection and quantification by near-infrared spectroscopy,” Muscle and Nerve, vol. 35, no. 4, pp. 510–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Kawasuji, M. Ikeda, N. Sakakibara, S. Fujii, S. Tomita, and Y. Watanabe, “Near-infrared monitoring of myocardial oxygenation during ischemic preconditioning,” Annals of Thoracic Surgery, vol. 69, no. 6, pp. 1806–1810, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Thaveau, J. Zoll, O. Rouyer et al., “Ischemic preconditioning specifically restores complexes I and II activities of the mitochondrial respiratory chain in ischemic skeletal muscle,” Journal of Vascular Surgery, vol. 46, no. 3, pp. 541–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. G. Kilian, S. Nakhla, K. Griffith, J. Harmer, M. Skilton, and D. S. Celermajer, “Reperfusion injury in the human forearm is mild and not attenuated by short-term ischaemic preconditioning,” Clinical and Experimental Pharmacology and Physiology, vol. 32, no. 1-2, pp. 86–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Hamaoka, H. Iwane, T. Shimomitsu et al., “Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy,” Journal of Applied Physiology, vol. 81, no. 3, pp. 1410–1417, 1996. View at Google Scholar · View at Scopus
  39. M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” Journal of Applied Physiology, vol. 90, no. 2, pp. 511–519, 2001. View at Google Scholar · View at Scopus
  40. M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philosophical Transactions of the Royal Society B, vol. 352, no. 1354, pp. 677–683, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Lavi and R. Lavi, “Conditioning of the heart: from pharmacological interventions to local and remote protection: possible implications for clinical practice,” International Journal of Cardiology, vol. 146, no. 3, pp. 311–318, 2011. View at Publisher · View at Google Scholar · View at Scopus