Table of Contents
Physiology Journal
Volume 2013, Article ID 254789, 11 pages
http://dx.doi.org/10.1155/2013/254789
Research Article

Noninvasive Evaluation of Nerve Conduction in Small Diameter Fibers in the Rat

1The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, K322, 1300 Morris Park Avenue, Bronx, NY 10461, USA
2Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Received 29 October 2012; Revised 27 December 2012; Accepted 28 December 2012

Academic Editor: Gary Lopaschuk

Copyright © 2013 Elena G. Zotova and Joseph C. Arezzo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Arezzo, “New developments in the diagnosis of diabetic neuropathy,” American Journal of Medicine, vol. 107, no. 2, pp. 9S–16S, 1999. View at Google Scholar · View at Scopus
  2. O. Boyraz and M. Saracoglu, “The effect of obesity on the assessment of diabetic peripheral neuropathy: a comparison of Michigan patient version test and Michigan physical assessment,” Diabetes Research and Clinical Practice, vol. 90, no. 3, pp. 256–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Cavaletti and P. Marmiroli, “Chemotherapy-induced peripheral neurotoxicity,” Nature Reviews Neurology, vol. 6, no. 12, pp. 657–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Dyck, J. W. Albers, H. Andersen et al., “Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 7, pp. 620–628, 2011. View at Publisher · View at Google Scholar
  5. J. C. Arezzo and E. Zotova, “Electrophysiologic measures of diabetic neuropathy: mechanism and meaning,” International Review of Neurobiology, vol. 50, pp. 229–255, 2002. View at Google Scholar · View at Scopus
  6. D. Lacomis, “Small-fiber neuropathy,” Muscle and Nerve, vol. 26, no. 2, pp. 173–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Fink and A. L. Oaklander, “Small-fiber neuropathy: answering the burning questions,” Science of Aging Knowledge Environment, vol. 2006, no. 6, article pe7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Feldman, D. R. Cornblath, J. Porter, R. Dworkin, and S. Scherer, “National Institute of Neurological Disorders and Stroke (NINDS): advances in understanding and treating neuropathy, 24-25 October 2006; Bethesda, Maryland,” Journal of the Peripheral Nervous System, vol. 13, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Arezzo, M. S. Litwak, and E. G. Zotova, “Correlation and dissociation of electrophysiology and histopathology in the assessment of toxic neuropathy,” Toxicologic Pathology, vol. 39, no. 1, pp. 46–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. So, “New insights into small fiber neuropathy,” Annals of Neurology, vol. 71, no. 1, pp. 3–4, 2012. View at Publisher · View at Google Scholar
  11. S. Yagihashi, M. Kamijo, Y. Ido, and D. J. Mirrlees, “Effects of long-term aldose reductase inhibition on development of experimental diabetic neuropathy. Ultrastructural and morphometric studies of sural nerve in streptozocin-induced diabetic rats,” Diabetes, vol. 39, no. 6, pp. 690–696, 1990. View at Google Scholar · View at Scopus
  12. A. J. M. Boulton, A. I. Vinik, J. C. Arezzo et al., “Diabetic neuropathies: a statement by the American Diabetes Association,” Diabetes Care, vol. 28, no. 4, pp. 956–962, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. L. Flatters and G. J. Bennett, “Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction,” Pain, vol. 122, no. 3, pp. 245–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Keswani, C. Jack, C. Zhou, and A. Höke, “Establishment of a rodent model of HIV-associated sensory neuropathy,” Journal of Neuroscience, vol. 26, no. 40, pp. 10299–10304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Lee, J. A. Low, E. Croarkin et al., “Changes in neurologic function tests may predict neurotoxicity caused by ixabepilone,” Journal of Clinical Oncology, vol. 24, no. 13, pp. 2084–2091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Herman, J. B. Brower, D. G. Stoddard et al., “Prevalence of somatic small fiber neuropathy in obesity,” International Journal of Obesity, vol. 31, no. 2, pp. 226–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. I. Vinik and D. Ziegler, “Diabetic cardiovascular autonomic neuropathy,” Circulation, vol. 115, no. 3, pp. 387–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Gonzalez-Duarte, J. Robinson-Papp, and D. M. Simpson, “Diagnosis and management of HIV-associated neuropathy,” Neurologic Clinics, vol. 26, no. 3, pp. 821–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. W. Jin, S. J. L. Flatters, W. H. Xiao, H. L. Mulhern, and G. J. Bennett, “Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-l-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells,” Experimental Neurology, vol. 210, no. 1, pp. 229–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Løseth, S. I. Mellgren, R. Jorde, S. Lindal, and E. Stalberg, “Polyneuropathy in type 1 and type 2 diabetes: comparison of nerve conduction studies, thermal perception thresholds and intraepidermal nerve fibre densities,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 2, pp. 100–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Vivithanaporn, G. Heo, J. Gamble et al., “Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study,” Neurology, vol. 75, no. 13, pp. 1150–1158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Tavee and D. Culver, “Sarcoidosis and small-fiber neuropathy,” Current Pain and Headache Reports, vol. 15, no. 3, pp. 201–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. W. H. Xiao, H. Zheng, F. Y. Zheng, R. Nuydens, T. F. Meert, and G. J. Bennett, “Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat,” Neuroscience, vol. 199, pp. 461–469, 2011. View at Publisher · View at Google Scholar
  24. W. H. Xiao, H. Zheng, and G. J. Bennett, “Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel,” Neuroscience, vol. 203, pp. 194–206, 2012. View at Publisher · View at Google Scholar
  25. M. Polydefkis, P. Hauer, J. W. Griffin, and J. C. McArthur, “Skin biopsy as a tool to assess distal small fiber innervation in diabetic neuropathy,” Diabetes Technology and Therapeutics, vol. 3, no. 1, pp. 23–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Hoitsma, J. P. H. Reulen, M. de Baets, M. Drent, F. Spaans, and C. G. Faber, “Small fiber neuropathy: a common and important clinical disorder,” Journal of the Neurological Sciences, vol. 227, no. 1, pp. 119–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. H. Horowitz, “The diagnostic workup of patients with neuropathic pain,” Anesthesiology Clinics, vol. 25, no. 4, pp. 699–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Devigili, V. Tugnoli, P. Penza et al., “The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology,” Brain, vol. 131, no. 7, pp. 1912–1925, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Backonja, D. Walk, R. R. Edwards et al., “Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities,” The Clinical Journal of Pain, vol. 25, no. 7, pp. 641–647, 2009. View at Google Scholar · View at Scopus
  30. M. Nebuchennykh, S. Løseth, S. Lindal, and S. I. Mellgren, “The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy,” Journal of Neurology, vol. 256, no. 7, pp. 1067–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Walk, N. Sehgal, T. Moeller-Bertram et al., “Quantitative sensory testing and mapping: a review of nonautomated quantitative methods for examination of the patient with neuropathic pain,” The Clinical Journal of Pain, vol. 25, no. 7, pp. 632–640, 2009. View at Google Scholar · View at Scopus
  32. G. Cavaletti, B. Frigeni, F. Lanzani et al., “Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools,” European Journal of Cancer, vol. 46, no. 3, pp. 479–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Lauria, S. T. Hsieh, O. Johansson et al., “European Federation of Neurological Societies/Peripheral Nerve Society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 79–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Hlubocky, K. Wellik, M. A. Ross et al., “Skin biopsy for diagnosis of small fiber neuropathy: a critically appraised topic,” Neurologist, vol. 16, no. 1, pp. 61–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Lauria, M. Bakkers, C. Schmitz et al., “Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study,” Journal of the Peripheral Nervous System, vol. 15, no. 3, pp. 202–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. I. Mellgren and S. Lindal, “Nerve biopsy—some comments on procedures and indications,” Acta Neurologica Scandinavica, vol. 191, pp. 64–70, 2011. View at Google Scholar
  37. S. Mackey, I. Carroll, B. Emir, T. K. Murphy, E. Whalen, and L. Dumenci, “Sensory pain qualities in neuropathic pain,” Journal of Pain, vol. 13, pp. 58–63, 2012. View at Google Scholar
  38. N. Authier, J. P. Gillet, J. Fialip, A. Eschalier, and F. Coudore, “Description of a short-term Taxol-induced nociceptive neuropathy in rats,” Brain Research, vol. 887, no. 2, pp. 239–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Baron, “Peripheral neuropathic pain: from mechanisms to symptoms,” Clinical Journal of Pain, vol. 16, no. 2, pp. S12–S20, 2000. View at Google Scholar · View at Scopus
  40. L. Gagliese and R. Melzack, “Age differences in nociception and pain behaviours in the rat,” Neuroscience and Biobehavioral Reviews, vol. 24, no. 8, pp. 843–854, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. C. Rice, D. Cimino-Brown, J. C. Eisenach et al., “Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards,” Pain, vol. 139, no. 2, pp. 243–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. A. Sullivan, S. I. Lentz, J. L. Roberts, and E. L. Feldman, “Criteria for creating and assessing mouse models of diabetic neuropathy,” Current Drug Targets, vol. 9, no. 1, pp. 3–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Authier, D. Balayssac, F. Marchand et al., “Animal models of chemotherapy-evoked painful peripheral neuropathies,” Neurotherapeutics, vol. 6, no. 4, pp. 620–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. I. G. Obrosova, “Diabetic painful and insensate neuropathy: pathogenesis and potential treatments,” Neurotherapeutics, vol. 6, no. 4, pp. 638–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Sandkühler, “Models and mechanisms of hyperalgesia and allodynia,” Physiological Reviews, vol. 89, pp. 707–758, 2009. View at Publisher · View at Google Scholar
  46. A. I. Basbaum, M. Gautron, F. Jazat, M. Mayes, and G. Guilbaud, “The spectrum of fiber loss in a model of neuropathic pain in the rat: an electron microscopic study,” Pain, vol. 47, no. 3, pp. 359–367, 1991. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Sugimoto and S. Yagihashi, “Peripheral nerve pathology in rats with streptozotocin-induced insulinoma,” Acta Neuropathologica, vol. 91, no. 6, pp. 616–623, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Lauria, R. Lombardi, M. Borgna et al., “Intraepidermal nerve fiber density in rat foot pad: neuropathologic- neurophysiologic correlation,” Journal of the Peripheral Nervous System, vol. 10, no. 2, pp. 202–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Siau, W. Xiao, and G. J. Bennett, “Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells,” Experimental Neurology, vol. 201, no. 2, pp. 507–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. K. Beiswenger, N. A. Calcutt, and A. P. Mizisin, “Epidermal nerve fiber quantification in the assessment of diabetic neuropathy,” Acta Histochemica, vol. 110, no. 5, pp. 351–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. T. Cheng, J. R. Dauch, J. M. Hayes, B. M. Yanik, and E. L. Feldman, “Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes,” Neurobiology of Disease, vol. 45, no. 1, pp. 280–287, 2012. View at Publisher · View at Google Scholar
  52. A. Höke, “Animal models of peripheral neuropathies,” Neurotherapeutics, vol. 9, no. 2, pp. 262–269, 2012. View at Publisher · View at Google Scholar
  53. H. C. Shin, Y. L. Lee, H. Y. Kwon, H. J. Park, and S. A. Raymond, “Activity-dependent variations in conduction velocity of C fibers of rat sciatic nerve,” Neuroscience Research, vol. 19, no. 4, pp. 427–431, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. M. D. Gee, B. Lynn, and B. Cotsell, “Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of C-fibre in the rat saphenous nerve,” Neuroscience, vol. 73, no. 3, pp. 667–675, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Bostock, M. Campero, J. Serra, and J. Ochoa, “Velocity recovery cycles of C fibres innervating human skin,” Journal of Physiology, vol. 553, no. 2, pp. 649–663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Chen and J. D. Levine, “Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat,” Neuroscience, vol. 121, no. 4, pp. 1007–1015, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. B. Peng, M. Ringkamp, R. A. Meyer, and J. N. Campbell, “Fatigue and paradoxical enhancement of heat response in C-fiber nociceptors from cross-modal excitation,” Journal of Neuroscience, vol. 23, no. 11, pp. 4766–4774, 2003. View at Google Scholar · View at Scopus
  58. K. D. Tanner, D. B. Reichling, R. W. Gear, S. M. Paul, and J. D. Levine, “Altered temporal pattern of evoked afferent activity in a rat model of vincristine-induced painful peripheral neuropathy,” Neuroscience, vol. 118, no. 3, pp. 809–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Djouhri, S. Koutsikou, X. Fang, S. McMullan, and S. N. Lawson, “Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors,” Journal of Neuroscience, vol. 26, no. 4, pp. 1281–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Chen and J. D. Levine, “Mechanically-evoked C-fiber activity in painful alcohol and AIDS therapy neuropathy in the rat,” Molecular Pain, vol. 3, article 5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Y. Li, B. Feng, H. Y. Tsu, and J. H. Schild, “Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not,” Neuroscience Letters, vol. 421, no. 1, pp. 62–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. W. H. Xiao and G. J. Bennett, “Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-l-carnitine,” Pain, vol. 135, no. 3, pp. 262–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Taguchi, H. Ota, T. Matsuda, S. Murase, and K. Mizumura, “Cutaneous C-fiber nociceptor responses and nociceptive behaviors in aged Sprague-Dawley rats,” Pain, vol. 151, no. 3, pp. 771–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Schmelz, “Translating nociceptive processing into human pain models,” Experimental Brain Research, vol. 196, no. 1, pp. 173–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Serra, R. Solà, C. Quiles et al., “C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia,” Pain, vol. 147, no. 1–3, pp. 46–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Ørstavik and E. Jørum, “Microneurographic findings of relevance to pain in patients with erythromelalgia and patients with diabetic neuropathy,” Neuroscience Letters, vol. 470, no. 3, pp. 180–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Schmidt, I. P. Kleggetveit, B. Namer Helås T et al., “Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients,” Pain, vol. 153, pp. 391–398, 2012. View at Publisher · View at Google Scholar
  68. J. Serra, H. Bostock, and X. Navarro, “Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo,” Neuroscience Letters, vol. 470, no. 3, pp. 168–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Serra, H. Bostock, R. Solà et al., “Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats,” Pain, vol. 153, no. 1, pp. 42–55, 2012. View at Publisher · View at Google Scholar
  70. A. P. Gokin, B. Philip, and G. R. Strichartz, “Preferential block of small myelinated sensory and motor fibers by lidocaine: in vivo electrophysiology in the rat sciatic nerve,” Anesthesiology, vol. 95, no. 6, pp. 1441–1454, 2001. View at Google Scholar · View at Scopus
  71. E. G. Zotova, G. J. Christ, W. Zhao, M. Tar, S. D. Kuppam, and J. C. Arezzo, “Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats,” Journal of Diabetes and Its Complications, vol. 21, no. 3, pp. 187–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. D. Legatt, J. Arezzo, and H. G. Vaughan Jr., “Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials,” Journal of Neuroscience Methods, vol. 2, no. 2, pp. 203–217, 1980. View at Publisher · View at Google Scholar · View at Scopus
  73. J. C. Arezzo, H. G. Vaughan Jr., M. A. Kraut, M. Steinschneider, and A. D. Legatt, “Intracranial generators of event related potentials in the monkey,” in Frontiers of Clinical Neuroscience. Evoked Potentials, R. Q. Cracco and I. Bodis Wollner, Eds., vol. 3, pp. 174–189, Alan R. Liss, New York, NY, USA, 1986. View at Google Scholar
  74. M. Steinschneider, Y. I. Fishman, and J. C. Arezzo, “Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey,” Cerebral Cortex, vol. 18, no. 3, pp. 610–625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. H. H. Schaumburg, E. Zotova, B. Cannella et al., “Structural and functional investigations of the murine cavernosal nerve: a model system for serial spatio-temporal study of autonomic neuropathy,” British Journal of Urology International, vol. 99, no. 4, pp. 916–924, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. E. G. Zotova, H. H. Schaumburg, C. S. Raine et al., “Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study,” Experimental Neurology, vol. 213, no. 2, pp. 439–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. G. R. Lewin and S. B. McMahon, “Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat,” Journal of Neurophysiology, vol. 66, no. 4, pp. 1205–1217, 1991. View at Google Scholar · View at Scopus
  78. F. Li, O. I. Abatan, H. Kim et al., “Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats,” Neurobiology of Disease, vol. 22, no. 3, pp. 669–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. H. H. Schaumburg, E. Zotova, C. S. Raine, M. Tar, and J. Arezzo, “The rat caudal nerves: a model for experimental neuropathies,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 128–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. B. Povlsen, N. Stankovic, P. Danielsson, and C. Hildebrand, “Fiber composition of the lateral plantar and superficial peroneal nerves in the rat foot,” Anatomy and Embryology, vol. 189, no. 5, pp. 393–399, 1994. View at Google Scholar · View at Scopus
  81. J. Serra, M. Campero, J. Ochoa, and H. Bostock, “Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin,” Journal of Physiology, vol. 515, no. 3, pp. 799–811, 1999. View at Google Scholar · View at Scopus
  82. B. Namer, B. Barta, K. Ørstavik et al., “Microneurographic assessment of C-fibre function in aged healthy subjects,” Journal of Physiology, vol. 587, no. 2, pp. 419–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Schmelz and R. Schmidt, “Microneurographic single-unit recordings to assess receptive properties of afferent human C-fibers,” Neuroscience Letters, vol. 470, no. 3, pp. 158–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Ringkamp, L. M. Johanek, J. Borzan et al., “Conduction properties distinguish unmyelinated sympathetic efferent fibers and unmyelinated primary afferent fibers in the monkey,” PLoS ONE, vol. 5, no. 2, article e9076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annual Review of Neuroscience, vol. 24, pp. 487–517, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. S. B. McMahon, G. Lewin, and S. R. Bloom, “The consequences of long-term topical capsaicin application in the rat,” Pain, vol. 44, no. 3, pp. 301–310, 1991. View at Publisher · View at Google Scholar · View at Scopus
  87. D. A. Simone and J. Ochoa, “Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans,” Pain, vol. 47, no. 3, pp. 285–294, 1991. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Nolano, D. A. Simone, G. Wendelschafer-Crabb, T. Johnson, E. Hazen, and W. R. Kennedy, “Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation,” Pain, vol. 81, no. 1-2, pp. 135–145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Khalili, G. Wendelschafer-Crabb, W. R. Kennedy, and D. A. Simone, “Influence of thermode size for detecting heat pain dysfunction in a capsaicin model of epidermal nerve fiber loss,” Pain, vol. 91, no. 3, pp. 241–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. A. B. Malmberg, A. P. Mizisin, N. A. Calcutt, T. von Stein, W. R. Robbins, and K. R. Bley, “Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch,” Pain, vol. 111, no. 3, pp. 360–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Polydefkis, P. Hauer, S. Sheth, M. Sirdofsky, J. W. Griffin, and J. C. McArthur, “The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy,” Brain, vol. 127, no. 7, pp. 1606–1615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. H. E. Torebjörk and R. G. Hallin, “Responses in human A and C fibres to repeated electrical intradermal stimulation,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 37, pp. 653–664, 1974. View at Google Scholar
  93. H. J. Braune, “Testing of the refractory period in sensory nerve fibres is the most sensitive method to assess beginning polyneuropathy in diabetics,” Electromyography and Clinical Neurophysiology, vol. 39, no. 6, pp. 355–359, 1999. View at Google Scholar · View at Scopus
  94. K. Ørstavik, B. Namer, R. Schmidt et al., “Abnormal function of C-fibers in patients with diabetic neuropathy,” Journal of Neuroscience, vol. 26, no. 44, pp. 11287–11294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. R. de Col, K. Messlinger, and R. W. Carr, “Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges,” Journal of Physiology, vol. 586, no. 4, pp. 1089–1103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. R. de Col, K. Messlinger, and R. W. Carr, “Repetitive activity slows axonal conduction velocity and concomitantly increases mechanical activation threshold in single axons of the rat cranial dura,” The Journal of Physiology, vol. 590, pp. 725–736, 2012. View at Google Scholar
  97. Z. R. Zhu, X. W. Tang, W. T. Wang et al., “Conduction failures in rabbit saphenous nerve unmyelinated fibers,” NeuroSignals, vol. 17, no. 3, pp. 181–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. A. George, J. Serra, X. Navarro, and H. Bostock, “Velocity recovery cycles of single C fibres innervating rat skin,” Journal of Physiology, vol. 578, no. 1, pp. 213–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. O. Obreja, M. Ringkamp, B. Namer et al., “Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human,” Pain, vol. 148, no. 1, pp. 59–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. S. N. Lawson, “Phenotype and function of somatic primary afferent nociceptive neurones with C-, Aδ- or Aα/β-fibres,” Experimental Physiology, vol. 87, no. 2, pp. 239–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Djouhri and S. N. Lawson, “Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals,” Brain Research Reviews, vol. 46, no. 2, pp. 131–145, 2004. View at Publisher · View at Google Scholar · View at Scopus