Table of Contents
Physiology Journal
Volume 2013, Article ID 563494, 12 pages
http://dx.doi.org/10.1155/2013/563494
Research Article

Reliability of Calf Bioelectrical Impedance Spectroscopy and Magnetic-Resonance-Imaging-Acquired Skeletal Muscle Hydration Measures in Healthy People

1Graduate Program in Health and Rehabilitation Sciences, Physical Therapy Field, Western University, London, ON, Canada N6G 1H1
2London Health Sciences Center, University Hospital Campus, 339 Windermere Road, London, ON, Canada N6A 5A5
3Western University Division of Nephrology, London Health Sciences Centre, 339 Windermere Road, London, ON, Canada N6A 5A5
4School of Physical Therapy and Department of Epidemiology and Biostatistics, Western University, London, ON, Canada N6G 1H1
5The Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, Western University, 100 Perth Drive, London, ON, Canada N6A 5K8
6School of Physical Therapy, Western University, London, ON, Canada N6G 1H1

Received 3 April 2013; Revised 17 June 2013; Accepted 17 June 2013

Academic Editor: Gary Lopaschuk

Copyright © 2013 Anuradha Sawant et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q.-L. Zhang and D. Rothenbacher, “Prevalence of chronic kidney disease in population-based studies: systematic review,” BMC Public Health, vol. 8, no. article 117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. S. C. Raj, Y. Sun, and A. H. Tzamaloukas, “Hypercatabolism in dialysis patients,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 589–594, 2008. View at Publisher · View at Google Scholar
  3. K. L. Johansen, T. Shubert, J. Doyle, B. Soher, G. K. Sakkas, and J. A. Kent-Braun, “Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function,” Kidney International, vol. 63, no. 1, pp. 291–297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. L. Johansen, “Exercise in the end-stage renal disease population,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1845–1854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Smart and M. Steele, “Exercise training in haemodialysis patients: a systematic review and meta-analysis,” Nephrology, vol. 16, no. 7, pp. 626–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sawant, A. A. House, and T. J. Overend, “Anabolic effect of exercise training in people with end-stage renal disease on haemodialysis: systematic review and meta-analysis,” Physiotherapy Canada. In press.
  7. R. F. Kushner, P. M. J. M. de Vries, and R. Gudivaka, “Use of bioelectrical impedance analysis measurements in the clinical management of patients undergoing dialysis,” American Journal of Clinical Nutrition, vol. 64, no. 3, pp. 503s–509s, 1996. View at Google Scholar · View at Scopus
  8. G. A. Kaysen, F. Zhu, S. Sarkar et al., “Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 988–995, 2005. View at Google Scholar · View at Scopus
  9. B. Charra, “Fluid balance, dry weight, and blood pressure in dialysis,” Hemodialysis International, vol. 11, no. 1, pp. 21–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Lindley, L. Aspinall, and C. Gardiner E Garthwaite, “Management of fluid status in haemodialysis patients: the roles of technology and dietary advice,” in Technical Problems in Patients on Hemodialysis, M. G. Penido, Ed., InTech, Rijeka, Croatia, 2011. View at Publisher · View at Google Scholar
  11. DaVita, “The hemodialysis diet,” http://www.davita.com/kidney-disease/diet-andnutrition/diet-basics/the-hemodialysis-diet/e/5314.
  12. P. MacHek, T. Jirka, U. Moissl, P. Chamney, and P. Wabel, “Guided optimization of fluid status in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 25, no. 2, pp. 538–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Passauer, E. Bussemaker, and P. Gross, “Dialysis hypotension: do we see light at the end of the tunnel?” Nephrology Dialysis Transplantation, vol. 13, no. 12, pp. 3024–3029, 1998. View at Google Scholar · View at Scopus
  14. A. K. Jain and R. M. Lindsay, “Intra and extra cellular fluid shifts during the inter dialytic period in conventional and daily hemodialysis patients,” ASAIO Journal, vol. 54, no. 1, pp. 100–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Judelson, C. M. Maresh, J. M. Anderson et al., “Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance?” Sports Medicine, vol. 37, no. 10, pp. 907–921, 2007. View at Google Scholar · View at Scopus
  16. P. Kotanko, N. W. Levin, and F. Zhu, “Current state of bioimpedance technologies in dialysis,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 808–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Patten, R. A. Meyer, and J. L. Fleckenstein, “T2 Mapping of Muscle,” Seminars in Musculoskeletal Radiology, vol. 7, no. 4, pp. 297–305, 2003. View at Google Scholar · View at Scopus
  18. M. Hatakenaka, H. Soeda, T. Okafuji et al., “Steroid myopathy: evaluation of fiber atrophy with T2 relaxation time—rabbit and human study,” Radiology, vol. 238, no. 2, pp. 650–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Holl, A. Echaniz-Laguna, G. Bierry et al., “Diffusion-weighted MRI of denervated muscle: a clinical and experimental study,” Skeletal Radiology, vol. 37, no. 12, pp. 1111–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Polak, F. A. Jolesz, and D. F. Adams, “Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation,” Investigative Radiology, vol. 23, no. 5, pp. 365–369, 1988. View at Google Scholar · View at Scopus
  21. A. T. Nygren and L. Kaijser, “Water exchange induced by unilateral exercise in active and inactive skeletal muscles,” Journal of Applied Physiology, vol. 93, no. 5, pp. 1716–1722, 2002. View at Google Scholar · View at Scopus
  22. O. Yanagisawa, D. Shimao, K. Maruyama, M. Nielsen, T. Irie, and M. Niitsu, “Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient,” Magnetic Resonance Imaging, vol. 27, no. 1, pp. 69–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. U. G. Kyle, I. Bosaeusb, and A. D. de Lorenzoc, “Bioelectrical impedance analysis part I: review of principles and methods,” Clinical Nutrition, vol. 23, no. 5, pp. 1226–1243, 2004. View at Google Scholar
  24. J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Statistical Methods in Medical Research, vol. 8, no. 2, pp. 135–160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Donner and M. Eliasziw, “Sample size requirements for reliability studies,” Statistics in Medicine, vol. 6, no. 4, pp. 441–448, 1987. View at Google Scholar · View at Scopus
  26. A. Fix and D. Daughton, Human Activity Profile, Psychological Assessment Resources, 1988.
  27. W. H. Hall, R. Ramachandran, S. Narayan, A. B. Jani, and S. Vijayakumar, “An electronic application for rapidly calculating Charlson comorbidity score,” BMC Cancer, vol. 4, article 94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Gray, “Anatomy of the human body,” http://www.bartleby.com/107/129.html.
  29. F. Zhu, M. K. Kuhlmann, S. Sarkar et al., “Adjustment of dry weight in hemodialysis patients using intradialytic continuous multifrequency bioimpedance of the calf,” International Journal of Artificial Organs, vol. 27, no. 2, pp. 104–109, 2004. View at Google Scholar · View at Scopus
  30. E. le Rumeur, F. Carre, A.-M. Bernard, J.-Y. Bansard, P. Rochcongar, and J. D. de Certaines, “Multiparametric classification of muscle T1 and T2 relaxation times determined by magnetic resonance imaging. The effects of dynamic exercise in trained and untrained subjects,” British Journal of Radiology, vol. 67, no. 794, pp. 150–156, 1994. View at Google Scholar · View at Scopus
  31. H. E. Berg, B. Tedner, and P. A. Tesch, “Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine,” Acta Physiologica Scandinavica, vol. 148, no. 4, pp. 379–385, 1993. View at Google Scholar · View at Scopus
  32. P. E. Shrout and J. L. Fleiss, “Intraclass correlations: uses in assessing rater reliability,” Psychological Bulletin, vol. 86, no. 2, pp. 420–428, 1979. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Streiner and G. R. Norman, “Reliability,” in Health Measurement Scales: Practical Guide to Their Development and Use, pp. 126–152, Oxford University Press, Oxford, UK, 3rd edition, 2003. View at Google Scholar
  34. P. W. Stratford and D. L. Riddle, “When minimal detectable change exceeds a diagnostic test-based threshold change value for an outcome measure: resolving the conflict,” Physical Therapy, vol. 92, no. 10, pp. 1338–1347, 2012. View at Google Scholar
  35. P. W. Stratford and C. H. Goldsmith, “Use of the standard error as a reliability index of interest: an applied example using elbow flexor strength data,” Physical Therapy, vol. 77, no. 7, pp. 745–750, 1997. View at Google Scholar · View at Scopus
  36. D. Cramer, “Levene’s test,” in The Sage Encyclopedia of Social Science Research Methods, M. S. L. Beck, A. Bryman, and T. F. Lio, Eds., 2004. View at Publisher · View at Google Scholar
  37. J. M. Bland and D. G. Altman, “Applying the right statistics: analyses of measurement studies,” Ultrasound in Obstetrics and Gynecology, vol. 22, no. 1, pp. 85–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Dittmar, “Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass,” American Journal of Physical Anthropology, vol. 122, no. 4, pp. 361–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. E. Armstrong, “Assessing hydration status: the elusive gold standard,” Journal of the American College of Nutrition, vol. 26, no. 5, pp. 575S–584S, 2007. View at Google Scholar · View at Scopus
  40. Y. Yamada, D. A. Schoeller, E. Nakamura, T. Morimoto, M. Kimura, and S. Oda, “Extracellular water may mask actual muscle atrophy during aging,” Journals of Gerontology A, vol. 65, no. 5, pp. 510–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. I. R. Lanza, D. W. Russ, and J. A. Kent-Braun, “Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks,” Journal of Applied Physiology, vol. 97, no. 3, pp. 967–975, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. J. McNeil, T. J. Doherty, D. W. Stashuk, and C. L. Rice, “Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men,” Muscle and Nerve, vol. 31, no. 4, pp. 461–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. J. McNeil and C. L. Rice, “Fatigability is increased with age during velocity-dependent contractions of the dorsiflexors,” Journals of Gerontology A, vol. 62, no. 6, pp. 624–629, 2007. View at Google Scholar · View at Scopus
  44. A. A. Vandervoort and A. J. McComas, “Contractile changes in opposing muscles of the human ankle joint with aging,” Journal of Applied Physiology, vol. 61, no. 1, pp. 361–367, 1986. View at Google Scholar · View at Scopus
  45. G. B. Joseph, T. Baum, J. Carballido-Gamio et al., “Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls—data from the osteoarthritis initiative,” Arthritis Research & Therapy, vol. 13, article R153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. B. Heymsfield, D. Gallagher, M. Visser, C. Nunez, and Z.-M. Wang, “Measurement of skeletal muscle: laboratory and epidemiological methods,” Journals of Gerontology A, vol. 50, pp. 23–29, 1995. View at Google Scholar · View at Scopus
  47. P. A. Baulby and F. J. Rugg-Gunn, “T2: the transverse relaxation time,” in Quantitative MRI of the Brain Measuring Changes Caused By Disease, P. Tofts, Ed., pp. 143–201, John Wiley and Sons, Chinchester, UK, 2004. View at Google Scholar
  48. K. Brandis, “Fluid physiology,” http://www.anaesthesiamcq.com/FluidBook/fl2_1.php.
  49. R. L. Segal, “Use of imaging to assess normal and adaptive muscle function,” Physical Therapy, vol. 87, no. 6, pp. 704–718, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Takeda, S. Kashiwaguchi, K. Endo, T. Matsuura, and T. Sasa, “The most effective exercise for strengthening the supraspinatus muscle. Evaluation by magnetic resonance imaging,” American Journal of Sports Medicine, vol. 30, no. 3, pp. 374–381, 2002. View at Google Scholar · View at Scopus
  51. C. S. Poon and R. M. Henkelman, “Practical T2 quantitation for clinical applications,” Journal of Magnetic Resonance Imaging, vol. 2, no. 5, pp. 541–553, 1992. View at Google Scholar · View at Scopus
  52. M. Liu, P. Bose, G. A. Walter, D. K. Anderson, F. J. Thompson, and K. Vandenborne, “Changes in muscle T2 relaxation properties following spinal cord injury and locomotor training,” European Journal of Applied Physiology, vol. 97, no. 3, pp. 355–361, 2006. View at Publisher · View at Google Scholar · View at Scopus