Table of Contents
Physiology Journal
Volume 2013 (2013), Article ID 847325, 9 pages
http://dx.doi.org/10.1155/2013/847325
Research Article

Effect of Aerobic Training on Cognitive Function and Arterial Stiffness in Sedentary Young Adults: A Pilot Randomized Controlled Trial

1School of Science and Health, University of Western Sydney, Campbelltown, NSW 2650, Australia
2Centre for Complementary Medicine Research, University of Western Sydney, Campbelltown, NSW 2650, Australia
3Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia

Received 12 October 2012; Revised 12 December 2012; Accepted 26 December 2012

Academic Editor: Germán Vicente-Rodriguez

Copyright © 2013 Samuel Asamoah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Graham, K. Rockwood, B. L. Beattie et al., “Prevalence and severity of cognitive impairment with and without dementia in an elderly population,” The Lancet, vol. 349, no. 9068, pp. 1793–1796, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Rovio, I. Kåreholt, E.-L. Helkala et al., “Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease,” Lancet Neurology, vol. 4, no. 11, pp. 705–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Abbott, L. R. White, G. W. Ross, K. H. Masaki, J. D. Curb, and H. Petrovitch, “Walking and dementia in physically capable elderly men,” Journal of the American Medical Association, vol. 292, no. 12, pp. 1447–1453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Newson and E. B. Kemps, “Cardiorespiratory fitness as a predictor of successful cognitive ageing,” Journal of Clinical and Experimental Neuropsychology, vol. 28, no. 6, pp. 949–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Bugg, K. Shah, D. T. Villareal, and D. Head, “Cognitive and neural correlates of aerobic fitness in obese older adults,” Experimental Aging Research, vol. 38, no. 2, pp. 131–145, 2012. View at Google Scholar
  7. S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. I. Åberg, N. L. Pedersen, K. Torén et al., “Cardiovascular fitness is associated with cognition in young adulthood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20906–20911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. E. Barnes, K. Yaffe, W. A. Satariano, and I. B. Tager, “A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults,” Journal of the American Geriatrics Society, vol. 51, no. 4, pp. 459–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Gordon-Larsen, M. C. Nelson, and B. M. Popkin, “Longitudinal physical activity and sedentary behavior trends: adolescence to adulthood,” American Journal of Preventive Medicine, vol. 27, no. 4, pp. 277–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. F. Mitchell, M. A. van Buchem, S. Sigurdsson et al., “Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility—Reykjavik study,” Brain, vol. 134, part 11, pp. 3398–3407, 2011. View at Google Scholar
  14. C. M. Chung, Y. S. Lin, C. M. Chu et al., “Arterial stiffness is the independent factor of left ventricular hypertrophy determined by electrocardiogram,” The American Journal of the Medical Sciences, vol. 344, no. 3, pp. 190–193, 2012. View at Google Scholar
  15. O. Hanon, S. Haulon, H. Lenoir et al., “Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss,” Stroke, vol. 36, no. 10, pp. 2193–2197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Pase, A. Pipingas, M. Kras et al., “Healthy middle-aged individuals are vulnerable to cognitive deficits as a result of increased arterial stiffness,” Journal of Hypertension, vol. 28, no. 8, pp. 1724–1729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. van Popele, D. E. Grobbee, M. L. Bots et al., “Association between arterial stiffness and atherosclerosis: the Rotterdam study,” Stroke, vol. 32, no. 2, pp. 454–460, 2001. View at Google Scholar · View at Scopus
  18. L. Zheng, W. J. Mack, H. C. Chui et al., “Coronary artery disease is associated with cognitive decline independent of changes on magnetic resonance imaging in cognitively normal elderly adults,” Journal of the American Geriatrics Society, vol. 60, no. 3, pp. 499–504, 2012. View at Google Scholar
  19. D. Bos, M. W. Vernooij, S. E. Elias-Smale et al., “Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging,” Alzheimers Dement, vol. 8, no. 5, supplement, pp. 104–111, 2012. View at Google Scholar
  20. M. F. O'Rourke and M. E. Safar, “Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy,” Hypertension, vol. 46, no. 1, pp. 200–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. P. Pase, A. Herbert, N. A. Grima, A. Pipingas, and M. F. O'Rourke, “Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis,” Internal Medicine Journal, vol. 42, no. 7, pp. 808–815, 2012. View at Google Scholar
  22. S. W. Rabkin and G. Jarvie, “Comparison of vascular stiffness in vascular dementia, Alzheimer dementia and cognitive impairment,” Blood Press, vol. 20, no. 5, pp. 274–283, 2011. View at Google Scholar
  23. H. Triantafyllidi, C. Arvaniti, J. Lekakis et al., “Cognitive impairment is related to increased arterial stiffness and microvascular damage in patients with never-treated essential hypertension,” American Journal of Hypertension, vol. 22, no. 5, pp. 525–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Goldberg, S. H. Boutcher, and Y. N. Boutcher, “The effect of 4 weeks of aerobic exercise on vascular and baroreflex function of young men with a family history of hypertension,” Journal of Human Hypertension, vol. 26, no. 11, pp. 644–649, 2012. View at Google Scholar
  25. A. G. Huebschmann, W. M. Kohrt, and J. G. Regensteiner, “Exercise attenuates the premature cardiovascular aging effects of type 2 diabetes mellitus,” Vascular Medicine, vol. 16, no. 5, pp. 378–390, 2011. View at Google Scholar
  26. K. M. Madden, C. Lockhart, D. Cuff, T. F. Potter, and G. S. Meneilly, “Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia,” Diabetes Care, vol. 32, no. 8, pp. 1531–1535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mustata, C. Chan, V. Lai, and J. A. Miller, “Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients,” Journal of the American Society of Nephrology, vol. 15, no. 10, pp. 2713–2718, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Thompson, N. Gordon, and L. Pescatello, Eds., ACSM'S Guidelines for Exercise Testing and Prescription, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2010.
  29. R. C. Gur, J. Richard, P. Hughett et al., “A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation,” Journal of Neuroscience Methods, vol. 187, no. 2, pp. 254–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Kane, A. R. A. Conway, T. K. Miura, and G. J. H. Colflesh, “Working memory, attention control, and the n-back task: a question of construct validity,” Journal of Experimental Psychology, vol. 33, no. 3, pp. 615–622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. W. Greve, F. Ingram, and K. J. Bianchini, “Latent structure of the Wisconsin Card Sorting Test in a clinical sample,” Archives of Clinical Neuropsychology, vol. 13, no. 7, pp. 597–609, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. E. A. Berg, “A simple objective technique for measuring flexibility in thinking,” The Journal of General Psychology, no. 39, p. 15, 1948. View at Google Scholar
  33. J. E. Sharman, J. E. Davies, C. Jenkins, and T. H. Marwick, “Augmentation index, left ventricular contractility, and wave reflection,” Hypertension, vol. 54, no. 5, pp. 1099–1105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. I. B. Wilkinson, S. A. Fuchs, I. M. Jansen et al., “Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis,” Journal of Hypertension, vol. 16, no. 12, part 2, pp. 2079–2084, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. G. Edwards and J. T. Lang, “Augmentation index and systolic load are lower in competitive endurance athletes,” American Journal of Hypertension, vol. 18, no. 5, pp. 679–683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. “Reference values for SphygmoCor Px,” http://www.atcormedical.com/pdf/TN8%20-%20Reference%20Values%20for%20SphygmoCor%20Px.pdf.
  37. R. A. Robergs and R. Landwehr, “The surprising history of the “HRmax = 220−age” equation,” Journal of Exercise Physiology Online, vol. 5, no. 2, pp. 1–10, 2002. View at Google Scholar
  38. V. Heywood, Advanced Fitness Assessment and Exercise Prescription, Human Kinetics, Champaign, Ill, USA, 5th edition, 2006.
  39. S. Stroth, K. Hille, M. Spitzer, and R. Reinhardt, “Aerobic endurance exercise benefits memory and affect in young adults,” Neuropsychological Rehabilitation, vol. 19, no. 2, pp. 223–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Stroth, R. K. Reinhardt, J. Thöne et al., “Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults,” Neurobiology of Learning and Memory, vol. 94, no. 3, pp. 364–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. L. Hansen, B. H. Johnsen, J. J. Sollers, K. Stenvik, and J. F. Thayer, “Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining,” European Journal of Applied Physiology, vol. 93, no. 3, pp. 263–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Heyn, B. C. Abreu, and K. J. Ottenbacher, “The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1694–1704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. C. Heyn, K. E. Johnson, and A. F. Kramer, “Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis,” Journal of Nutrition, Health and Aging, vol. 12, no. 6, pp. 401–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. T. A. Salthouse, “When does age-related cognitive decline begin?” Neurobiology of Aging, vol. 30, no. 4, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. E. Rikli and D. J. Edwards, “Effects of a three-year exercise program on motor function and cognitive processing speed in older women,” Research Quarterly for Exercise and Sport, vol. 62, no. 1, pp. 61–67, 1991. View at Google Scholar · View at Scopus
  46. P. A. Vernon, “Speed of information processing and general intelligence,” Intelligence, vol. 7, no. 1, pp. 53–70, 1983. View at Google Scholar · View at Scopus
  47. S. J. Cohn, J. S. Carlson, and A. R. Jensen, “Speed of information processing in academically gifted youths,” Personality and Individual Differences, vol. 6, no. 5, pp. 621–629, 1985. View at Google Scholar · View at Scopus
  48. P. A. Vernon and A. R. Jensen, “Individual and group differences in intelligence and speed of information processing,” Personality and Individual Differences, vol. 5, no. 4, pp. 411–423, 1984. View at Google Scholar · View at Scopus
  49. K. D. Currie, S. G. Thomas, and J. M. Goodman, “Effects of short-term endurance exercise training on vascular function in young males,” European Journal of Applied Physiology, vol. 107, no. 2, pp. 211–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. J. D. Cameron and A. M. Dart, “Exercise training increases total systemic arterial compliance in humans,” American The Journal of Physiology, vol. 266, no. 2, pp. H693–H701, 1994. View at Google Scholar · View at Scopus
  51. T. Kakiyama, M. Matsuda, and S. Koseki, “Effect of physical activity on the distensibility of the aortic wall in healthy males,” Angiology, vol. 49, no. 10, pp. 749–757, 1998. View at Google Scholar · View at Scopus
  52. E. M. Tuzcu, S. R. Kapadia, E. Tutar et al., “High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults evidence from intravascular ultrasound,” Circulation, vol. 103, no. 22, pp. 2705–2710, 2001. View at Google Scholar · View at Scopus
  53. L. T. Mahoney, T. L. Burns, W. Stanford et al., “Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine study,” Journal of the American College of Cardiology, vol. 27, no. 2, pp. 277–284, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Ferreira, J. W. R. Twisk, C. D. A. Stehouwer, W. van Mechelen, and H. C. G. Kemper, “Longitudinal changes in VO2max: associations with carotid IMT and arterial stiffness,” Medicine and Science in Sports & Exercise, vol. 35, no. 10, pp. 1670–1678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. D. J. Green, A. Maiorana, G. O'Driscoll, and R. Taylor, “Effect of exercise training on endothelium-derived nitric oxide function in humans,” The Journal of Physiology, vol. 561, no. 1, pp. 1–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. A. S. Kelly, R. J. Wetzsteon, D. R. Kaiser, J. Steinberger, A. J. Bank, and D. R. Dengel, “Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise,” The Journal of Pediatrics, vol. 145, no. 6, pp. 731–736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. H. Park, M. Miyashita, Y. C. Kwon et al., “A 12-week after-school physical activity programme improves endothelial cell function in overweight and obese children: a randomised controlled study,” BMC Pediatrics, vol. 12, no. 1, p. 111, 2012. View at Google Scholar
  58. P. V. Vaitkevicius, J. L. Fleg, J. H. Engel et al., “Effects of age and aerobic capacity on arterial stiffness in healthy adults,” Circulation, vol. 88, no. 4, pp. 1456–1462, 1993. View at Google Scholar · View at Scopus