Table of Contents
Research Letters in Physics
Volumeย 2008, Article IDย 681397, 4 pages
http://dx.doi.org/10.1155/2008/681397
Research Letter

Polarization Insensibility of Columnar Quantum Dot Structure Emitting at ๐€ = ๐Ÿ . ๐Ÿ“ ๐Ÿ“ ๐ m : A Theoretical Study

FOTON-INSA Laboratory, CNRS UMR 6082, INSA de Rennes, 20 avenue des Buttes de Coësmess, CS 14315, 35043 Rennes Cedex, France

Received 20 May 2008; Accepted 6 August 2008

Academic Editor: Rajeevย Ahuja

Copyright ยฉ 2008 J. Even and L. Pedesseau. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Vertically stacked InAs/InP columnar quantum dots (CQDs) for polarization insensitive semiconductor amplifier in telecommunications applications are studied theoretically. An axial model is used to predict mechanical, electronic, and optical properties of these CQDs. A crossover from a dominant transverse electric (TE) optical ground state absorption to a dominant transverse magnetic (TM) absorption is predicted for a number of layers equal to about 9 in good agreement with the experiment. The weight of the light hole component of the valence band ground state increases as a function of the number of layers. The change of the TE/TM polarization ratio is also associated to a symmetry change of the heavy hole component. A modification of the aspect ratio of the CQD seems to be the most important factor to explain the change of the electronic states configuration as a function of the strain distribution.


Recently, vertically stacked quantum dots (QDs) with a very small or zero spacing (columnar QD, CQD) have been investigated in order to obtain polarization insensitive semiconductor amplifiers (SOAs) [1]. These experimental results indicate that the TE/TM mode photoluminescence intensity is inverted for a number of QD layers (N) beyond 9 in the InAs/GaAs system. A first theoretical study for InAs/GaAs columnar system up to ๐‘ = 5 shows that the biaxial strain is modified at the center of the CQD by comparison to standard QD [2]. As a consequence, the light hole (LH) component of the hole ground state increases when the number of layer increases or when the QD spacing decreases. This approach has been extended more recently [3] to the InAs/InP system in order to propose SOA operating at 1.55 ๐œ‡ m. These new SOAs will be able to treat random optical signals for general fiber communication. Experimental results have been obtained in our group in the last years concerning the physics and the optimization of devices on similar InAs/InP-QD-based structures [48]. We have also used a complete theoretical description of the electronic properties of such nanostructures [9]. An efficient mechanical and electronic axial approximation of the strained 8 ร— 8 Hamiltonian has been proposed for zinc-blende nanostructures with a cylindrical shape on (100) substrates [10, 11]. It is possible with this method to treat large systems using conventional finite element computation [12]. We have demonstrated that it is able to describe the complex inhomogeneous strain distribution and electronic properties of InAs/InP QD using cylindrical coordinates ( ๐ซ , ๐ณ ) [911]. In this paper, the strain, electronic, and optical properties of InAs/InP CQD are analyzed with this method.

We examine InAs CQD geometries corresponding to the ๐ถ โˆž ๐‘ฃ symmetry (rotational symmetry around the z-[001]-axis) as shown by Figure 1(a) for 7 layers of truncated cones. The chosen dimensions are 1.2 nm for the truncated cone height and 7 nm for the radius. The CQDs are embedded into an In0.85Ga0.15As0.33P0.67 lattice-matched quaternary alloy. The authors of [3] have used an In0.66Ga0.34As0.44P0.56 tensile strain (1%) quaternary alloy between the layers for strain compensation. The InAs wetting layer usually present during the growth of such Stranski-Krastanow type QD is not specified, so we have decided to use a quaternary alloy with an average composition In0.75Ga0.25As0.58P0.42 between the layers. It should be pointed out that the results are almost not affected by the composition of this alloy. The axial 8 ร— 8 QD Hamiltonian is block diagonal in a ๐… ๐ณ basis, where ๐… ๐ณ = ๐ฝ ๐‘ง + ๐ฟ ๐‘ is the total angular momentum. The basis is constructed in a product form | ๐‰ , ๐‰ ๐ณ โŸฉ | ๐‹ ๐ณ = ๐… ๐ณ โˆ’ ๐‰ ๐ณ โŸฉ where the first factor corresponds to the band-edge Bloch functions (the ( ๐‘ข 1 , ๐‘ข 2 ) , ( ๐‘ข 4 , ๐‘ข 5 ) , ( ๐‘ข 3 , ๐‘ข 6 ) , ( ๐‘ข 7 , ๐‘ข 8 ) bands are, respectively, related to the conduction band (CB), heavy hole (HH), light hole (LH), and split-off bands (SOs)). The variations of the energy of the electronic conduction band (CB) degenerate ground and excited states are represented as a function of the number of layers on Figure 1(b). The CB ground state of the CQD corresponds to ๐… ๐ณ = ยฑ 1 / 2 independently of the number of layers as observed in the case of a single QD [11]. The most striking feature appears for the valence bands (VBs) behaviour (Figure 1(c)). A crossover between ๐… ๐ณ = ยฑ 3 / 2 and ๐… ๐ณ = ยฑ 1 / 2 for the VB ground state is calculated for a number of layers close to 9. We may notice that this number corresponds to an aspect ratio of the CQD on the order of 1. A modification of the main confinement effect from vertical to radial is important.

fig1
Figure 1: As an example, we show InAs CQD geometry corresponding to ๐‘ = 7 layers of truncated cones. (a) Dependence of the electronic conduction bands ( ๐… ๐ณ = ยฑ 1 / 2 straight lines and ๐… ๐ณ = ยฑ 3 / 2 , dashed lines) (b) and of the electronic Valance Bands ( ๐… ๐ณ = ยฑ 1 / 2 straight lines and ๐… ๐ณ = ยฑ 3 / 2 , dashed lines) (c) versus the number of layers.

In Figure 2, the variations of the HH, LH, and CB confinement potentials along the vertical axis are represented for ๐‘ = 9 . As it can be seen, the values of the HH and LH potentials are similar at the center of the CQD. The biaxial strain component is almost equal to zero in the CQD which is completely different from what is observed in usual flat QD [911]. This is also a result of the change in the aspect ratio. The ๐ฎ 3 LH (left) and ๐ฎ 4 HH (right) components of the (a)-(b) ๐… ๐ณ = + 1 / 2 and ๐… ๐ณ = + 3 / 2 VB states are shown in Figure 3 for ๐‘ = 8 . In that case (Figure 1(c)), the ๐… ๐ณ = + 3 / 2 state is the VB ground state and the ๐… ๐ณ = + 1 / 2 is the VB first excited state which is very close in energy. The weights of these two components are indicated above each picture. The weight of the ๐ฎ 4 HH component (79%) is the most important one for the ๐… ๐ณ = + 3 / 2 VB ground state. In that case, the overlap with the ๐ฎ 2 CB component (94%) of the ๐… ๐ณ = + 1 / 2 CB ground state is by far the most important one giving rise to a TE-polarized absorption. The ๐ฎ 3 LH component of the ๐… ๐ณ = + 3 / 2 VB ground state is weaker (12%), but the most important feature is that it is almost antisymmetric with respect to a plane symmetry perpendicular to the z-axis. The overlap with the symmetric ๐ฎ 2 CB component of the ๐… ๐ณ = + 1 / 2 CB ground state is therefore almost equal to 0, giving rise to a negligible TM-polarized absorption. On the contrary, the ๐ฎ 3 LH component of the ๐… ๐ณ = + 1 / 2 VB first excited state is symmetric.

681397.fig.002
Figure 2: Evolution of the CB, HH (straight lines), LH (dashed line) confinement potentials represented for ๐‘ = 9 .
fig3
Figure 3: The ๐ฎ 3 LH (a), (e) and ๐ฎ 4 HH (b), (f) components of the ๐… ๐ณ = + 1 / 2 and ๐… ๐ณ = + 3 / 2 VB states are shown for ๐‘ = 8 . Idem for ๐‘ = 1 0 with ๐ฎ 3 LH (c), (g) and ๐ฎ 4 HH (d), (h) components of the ๐… ๐ณ = + 1 / 2 and ๐… ๐ณ = + 3 / 2 VB states.

The ๐ฎ 3 , ๐ฎ 4 components of the (c), (d) ๐… ๐ณ = + 1 / 2 and (g), (h) ๐… ๐ณ = + 3 / 2 VB states are represented on Figure 3 in the same order for a number of layers equal to 10 that is beyond the crossover. In that case (Figure 1(c)), the ๐… ๐ณ = + 1 / 2 state is now the VB ground state and the ๐… ๐ณ = + 3 / 2 is the VB first excited state. It can be observed now (e) that the weight of the ๐ฎ 3 LH component of the ๐… ๐ณ = + 1 / 2 VB ground state has increased and remains symmetric. The TM-polarized absorption of the ground state optical transition is associated with this component. In addition, a TE-polarized absorption is predicted at the same energy for the optical transition between the ๐… ๐ณ = + 1 / 2 CB ground state and the ๐… ๐ณ = โˆ’ 1 / 2 VB ground state. It is related to the ๐ฎ 6 LH component of the ๐… ๐ณ = โˆ’ 1 / 2 VB ground state which corresponds to the symmetric ๐ฎ 3 LH component of the ๐… ๐ณ = + 1 / 2 VB ground state (e). We may notice that the ๐ฎ 4 HH component of the ๐… ๐ณ = + 3 / 2 VB state (h) is now antisymmetric and therefore the TE-polarized absorption associated to that state disappears.

We have represented on Figure 4, the variation of the TE- (straight lines) or TM (dashed lines)—polarized absorption spectra for structures with 7 โ‰ค ๐‘ โ‰ค 1 2 . The energy of the ground state optical transition decreases when N increases. It is a size effect. For ๐‘ < 9 , the absorption spectrum is predominantly TE at the ground state optical transition and TM at the first excited state optical transition. For ๐‘ > 9 , the absorption spectrum at the ground state optical transition is TE and TM with a predominant TM character and the first excited state transition is dark.

681397.fig.004
Figure 4: Dependence of the TE- (straight line) and TM- (dashed line) polarized absorption spectra for structures within the interval 7 โ‰ค ๐‘ โ‰ค 1 2 .

We have used a well-adapted axial model to study the mechanical, electronic, and optical properties of CQD. So, as a conclusion, we confirmed that the crossover from a dominant TE optical ground state absorption to a dominant TM absorption is predicted for a number of layers equal to about 9 in good agreement with the experiment. We have calculated that the electronic state configuration is strongly affected, particularly in the valence band. Then, we have shown that the weight of LH component of the VB ground state increases as a function of the number of layers but the transition of the TE/TM polarization ratio is also associated to a symmetry change of the HH component. We have also illustrated that the variation of the CQD aspect ratio induces changes in the main confinement effect (from vertical to radial) and in the strain distribution.

References

  1. T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, โ€œPolarization controlled edge emission from columnar InAs/GaAs self-assembled quantum dots,โ€ Physica Status Solidi (C), vol. 0, no. 4, pp. 1137โ€“1140, 2003. View at Publisher ยท View at Google Scholar
  2. T. Saito, T. Nakaoka, T. Kakitsuka, Y. Yoshikuni, and Y. Arakawa, โ€œStrain distribution and electronic states in stacked InAs/GaAs quantum dots with dot spacing 0–6 nm,โ€ Physica E, vol. 26, no. 1–4, pp. 217โ€“221, 2005. View at Publisher ยท View at Google Scholar
  3. K. Kawaguchi, M. Ekawa, N. Yasuoka et al., โ€œ1.3–1.6 μm broadband polarization-independent luminescence by columnar InAs quantum dots on InP(001),โ€ Physica Status Solidi (C), vol. 3, no. 11, pp. 3646โ€“3651, 2006. View at Publisher ยท View at Google Scholar
  4. C. Cornet, C. Levallois, P. Caroff et al., โ€œImpact of the capping layers on lateral confinement in InAsInP quantum dots for 1.55μm laser applications studied by magnetophotoluminescence,โ€ Applied Physics Letters, vol. 87, no. 23, Article ID 233111, 3 pages, 2005. View at Publisher ยท View at Google Scholar
  5. C. Cornet, C. Labbé, H. Folliot et al., โ€œTime-resolved pump probe of 1.55 μm InAs/InP quantum dots under high resonant excitation,โ€ Applied Physics Letters, vol. 88, no. 17, Article ID 171502, 3 pages, 2006. View at Publisher ยท View at Google Scholar
  6. C. Cornet, M. Hayne, P. Caroff et al., โ€œIncrease of charge-carrier redistribution efficiency in a laterally organized superlattice of coupled quantum dots,โ€ Physical Review B, vol. 74, no. 24, Article ID 245315, 10 pages, 2006. View at Publisher ยท View at Google Scholar
  7. E. Homeyer, R. Piron, F. Grillot et al., โ€œDemonstration of a low threshold current in 1.54 μm InAs/InP(311)B quantum dot laser with reduced quantum dot stacks,โ€ Japanese Journal of Applied Physics, vol. 46, no. 10A, part 1, pp. 6903โ€“6905, 2007. View at Publisher ยท View at Google Scholar
  8. K. Veselinov, F. Grillot, C. Cornet et al., โ€œAnalysis of the double laser emission occurring in 1.55 μm InAs/InP (113)B quantum-dot lasers,โ€ IEEE Journal of Quantum Electronics, vol. 43, no. 9, pp. 810โ€“816, 2007. View at Publisher ยท View at Google Scholar
  9. C. Cornet, A. Schliwa, J. Even et al., โ€œElectronic and optical properties of InAs/InP quantum dots on InP(100) and InP(311)B substrates: theory and experiment,โ€ Physical Review B, vol. 74, no. 3, Article ID 035312, 9 pages, 2006. View at Publisher ยท View at Google Scholar
  10. J. Even, F. Doré, C. Cornet, L. Pedesseau, A. Schliwa, and D. Bimberg, โ€œSemianalytical evaluation of linear and nonlinear piezoelectric potentials for quantum nanostructures with axial symmetry,โ€ Applied Physics Letters, vol. 91, no. 12, Article ID 122112, 3 pages, 2007. View at Publisher ยท View at Google Scholar
  11. J. Even, F. Doré, C. Cornet, and L. Pedesseau, โ€œSemianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures,โ€ Physical Review B, vol. 77, no. 8, Article ID 085305, 6 pages, 2008. View at Publisher ยท View at Google Scholar
  12. Femlab 3.2 software, Trademark of Comsol AB, 2005.