Table of Contents
Physics Research International
Volume 2011 (2011), Article ID 734543, 12 pages
http://dx.doi.org/10.1155/2011/734543
Research Article

Vortex Structures in a Rotating BEC Dark Matter Component

Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

Received 28 April 2011; Accepted 4 August 2011

Academic Editor: Robert Hallock

Copyright © 2011 N. T. Zinner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We study the effects of a dark matter component that consists of bosonic particles with ultralight masses in the condensed state. We compare previous studies for both noninteracting condensates and with repulsive two-body terms and show consistency between the proposals. Furthermore, we explore the effects of rotation on a superfluid dark matter condensate, assuming that a vortex lattice is formed as seen in ultracold atomic gas experiments. The influence of such a lattice in virialization of gravitationally bound structures and on galactic rotation velocity curves is explored. With fine-tuning of the bosonic particle mass and the two-body repulsive interaction strength, we find that one can have substructure on rotation curves that resembles some observations in spiral galaxies. This occurs when the dark matter halo has an array of hollow cylinders. This can cause oscillatory behavior in the galactic rotation curves in similar fashion to the well-known effect of the spiral arms. We also consider how future experiments and numerical simulations with ultracold atomic gases could tell us more about such exotic dark matter proposals.