Table of Contents
Physics Research International
Volume 2012, Article ID 323279, 8 pages
http://dx.doi.org/10.1155/2012/323279
Research Article

Correlation between the Magnetoresistance, IR Magnetoreflectance, and Spin-Dependent Characteristics of Multilayer Magnetic Films

Institute for Information Recording, National Academy of Sciences of Ukraine, 2 Shpak Street, Kiev 03113, Ukraine

Received 27 July 2011; Accepted 25 October 2011

Academic Editor: Manh-Huong Phan

Copyright © 2012 V. G. Kravets. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Baibich, J. M. Broto, A. Fert et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Physical Review Letters, vol. 61, no. 21, pp. 2472–2475, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Physical Review B, vol. 39, no. 7, pp. 4828–4830, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Dieny, B. A. Gurney, S. E. Lambert et al., “Magnetoresistive sensor based on the spin valve effect,” US patent 5206590, 1993.
  4. C. Chappert, A. Fert, and F. N. van Dau, “The emergence of spin electronics in data storage,” Nature Materials, vol. 6, no. 11, pp. 813–823, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Fert, A. Barthelemy, and F. Petroff, “Spin transport in magnetic multilayers and tunnel junctions,” in Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, D. M. Mills and J. A. C. Bland, Eds., chapter 6, Elsevier, Amsterdam, The Netherlands, 2006. View at Google Scholar
  6. J. C. Jacquet and T. Valet, “A new magnetooptical effect discovered on magnetic multilayers: the magnetorefractive effect,” in Magnetic Ultrathin Films, Multilayers and Surfaces, E. Marinero, Ed., pp. 477–490, Materials Research Society, Pittsburg, Pa, USA, 1995. View at Google Scholar
  7. V. G. Kravets, D. Bozec, J. A. D. Matthew et al., “Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films,” Physical Review B, vol. 65, no. 5, Article ID 054415, 9 pages, 2002. View at Google Scholar
  8. J. van Driel, F. R. De Boer, R. Coehoorn, and G. H. Rietjens, “Magnetic linear dichroism of infrared light in ferromagnetic alloy films,” Physical Review B, vol. 60, no. 10, pp. R6949–R6952, 1999. View at Google Scholar · View at Scopus
  9. R. T. Mennicke, D. Bozec, V. G. Kravets, M. Vopsaroiu, J. A. D. Matthew, and S. M. Thompson, “Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials,” Journal of Magnetism and Magnetic Materials, vol. 303, no. 1, pp. 92–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. B. Granovsky, I. V. Bykov, E. A. Gan'shina et al., “Magnetorefractive effect in magnetic nanocomposites,” Journal of Experimental and Theoretical Physics, vol. 96, no. 6, pp. 1104–1112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. V. G. Kravets, L. V. Poperenko, and A. F. Kravets, “Magnetoreflectance of ferromagnetic metal-insulator granular films with tunneling magnetoresistance,” Physical Review B, vol. 79, no. 14, Article ID 144409, 2009. View at Publisher · View at Google Scholar
  12. M. Vopsaroiu, D. Bozec, J. A. D. Matthew, S. M. Thompson, C. H. Marrows, and M. Perez, “Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect,” Physical Review B, vol. 70, no. 21, Article ID 214423, 7 pages, 2004. View at Publisher · View at Google Scholar
  13. M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 1999.
  14. A. V. Sokolov, Optical Properties of Metals, Blackie, Glasgow, UK, 1967.
  15. C. Kittel, Introduction to Solid State Physics, Wiley, New York, NY, USA, 1995.
  16. M. Julliere, “Tunneling between ferromagnetic films,” Physics Letters A, vol. 54, no. 3, pp. 225–226, 1975. View at Google Scholar
  17. K. H. Bennemann, Ed., Nonlinear Optics in Metals, Clarendon Press, Oxford, UK, 1998.
  18. V. G. Kravets, D. Bozec, J. A. D. Matthew, and S. M. Thompson, “Calculation of the magnetorefractive effect in giant magnetoresistive granular films,” Journal of Applied Physics, vol. 91, no. 10, pp. 8587–8590, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier,” Physical Review B, vol. 39, no. 10, pp. 6995–7002, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Y. Tsymbal, O. N. Mryasov, and P. R. LeClain, “Spin-dependent tunneling in magnetic tunnel junctions,” Journal of Physics: Condensed Matter, vol. 15, pp. R109–R142, 2003. View at Publisher · View at Google Scholar
  21. M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Physical Review B, vol. 61, no. 12, pp. 8187–8201, 2000. View at Google Scholar · View at Scopus
  22. V. G. Kravets, “Polaron interpretation of the magnetoreflectance effect in insulating α-Al2O3,” Physical Review B, vol. 72, no. 6, Article ID 064303, 2005. View at Publisher · View at Google Scholar
  23. B. G. Park, T. Banerjee, J. C. Lodder, and R. Jansen, “Tunnel Spin polarization versus energy for clean and doped Al2O3 barriers,” Physical Review Letters, vol. 99, no. 21, Article ID 217206, 2007. View at Publisher · View at Google Scholar
  24. S. O. Valenzuela, D. J. Monsma, C. M. Marcus, V. Narayanamurti, and M. Tinkham, “Spin polarized tunneling at finite bias,” Physical Review Letters, vol. 94, no. 19, Article ID 196601, 2005. View at Publisher · View at Google Scholar