Table of Contents
Physics Research International
Volume 2012 (2012), Article ID 352681, 9 pages
http://dx.doi.org/10.1155/2012/352681
Review Article

Zero Spatial Frequency Limit: Method to Characterize Photopolymers as Optical Recording Material

1Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
2Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
3Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain

Received 3 May 2012; Accepted 14 June 2012

Academic Editor: Michael R. Gleeson

Copyright © 2012 Sergi Gallego et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Neumann, K. S. Wieking, and D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Applied Optics, vol. 38, no. 25, pp. 5418–5421, 1999. View at Google Scholar · View at Scopus
  2. X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Applied Physics Letters, vol. 74, no. 25, pp. 3791–3793, 1999. View at Google Scholar · View at Scopus
  3. A. Márquez, S. Gallego, M. Ortuño et al., “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” in Optical Modelling and Design, vol. 7717, 77170D of Proceedings of the SPIE, Brussels, Belgium, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. D. Lechner, “Photopolymers for optical memories and waveguides,” Electronic Properties of Polymers and Related Compounds, vol. 63, pp. 301–308, 1985. View at Google Scholar
  5. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences, Springer, Berlin, Germany, 2000.
  6. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Optics Letters, vol. 28, no. 17, pp. 1510–1512, 2003. View at Google Scholar · View at Scopus
  7. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Polymer Science, vol. 2, pp. 282–290, 1994. View at Google Scholar
  8. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems, John Wiley & Sons, 2010.
  9. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” Journal of the Optical Society of America A, vol. 17, no. 6, pp. 1108–1114, 2000. View at Google Scholar · View at Scopus
  10. M. R. Gleeson, S. Liu, and J. T. Sheridan, “The production of primary radicals in photopolymers during holographic exposure,” Optik, vol. 121, no. 24, pp. 2273–2275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Optics Express, vol. 13, no. 13, pp. 4878–4889, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Zhao and P. Moroulis, “Extension of diffusion model of holograhic photopolymer,” Optics Communications, vol. 15, pp. 528–532, 1995. View at Google Scholar
  13. J. V. Kelly, M. R. Gleeson, C. E. Close et al., “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Optics Express, vol. 13, no. 18, pp. 6990–7004, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Applied Optics, vol. 48, no. 22, pp. 4403–4413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Gallego, A. Márquez, D. Méndez et al., “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Applied Optics, vol. 46, no. 30, pp. 7506–7512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Gallego, A. Márquez, D. Méndez et al., “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Applied Optics, vol. 47, no. 14, pp. 2557–2563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Optical Materials, vol. 33, no. 3, pp. 531–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A.J. Bergeron, F. Gauvin, D. Gagnon, H. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid crystal spatial light modulator,” Applied Optics, vol. 34, pp. 5133–5139, 1995. View at Google Scholar
  19. S. Calixto, “Dry polymer for holographic recording,” Applied Optics, vol. 26, pp. 3904–3909, 1987. View at Google Scholar
  20. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Applied Physics Letters, vol. 73, no. 12, pp. 1628–1630, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Martin, P. E. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Optical Engineering, vol. 33, p. 3942, 1994. View at Google Scholar
  22. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Applied Physics B, vol. 76, no. 8, pp. 851–857, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. T. O'Neill, A. J. Carr, S. M. Daniels et al., “Refractive elements produced in photopolymer layers,” Journal of Materials Science, vol. 40, no. 15, pp. 4129–4132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” Journal of Agricultural and Food Chemistry, vol. 51, no. 16, pp. 4504–4526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Optics Express, vol. 15, no. 19, pp. 12425–12435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” Journal of the Optical Society of America B, vol. 23, no. 10, pp. 2079–2088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gallego, Modelización del comportamiento holográfico de un fotopolímero de polivinilalcohol/acrilamida [Ph.D. thesis], Univertity of Alicante, 2005.
  28. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, UK, 1980.
  29. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Optics Communications, vol. 274, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Gallego, M. Ortuño, C. Neipp et al., “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Optics Express, vol. 14, no. 12, pp. 5121–5128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoreticalandexperimental examination of primary radical generation,” Applied Physics B, vol. 100, pp. 559–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” Journal of Applied Physics, vol. 107, no. 5, Article ID 053113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules, vol. 43, no. 22, pp. 9462–9472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Gallego, A. Márquez, M. Ortuño et al., “Surface relief model for photopolymers without cover plating,” Optics Express, vol. 19, no. 11, pp. 10896–10906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Optics Express, vol. 20, pp. 11218–11231, 2012. View at Google Scholar
  36. J. V. Kelly, F. T. O'Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” Journal of the Optical Society of America B, vol. 22, no. 2, pp. 407–416, 2005. View at Publisher · View at Google Scholar · View at Scopus