Table of Contents
Physics Research International
Volume 2012, Article ID 591839, 9 pages
http://dx.doi.org/10.1155/2012/591839
Review Article

Novel Applications of Ferrites

Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, P.O. Box 70360, Coyoacán 04510, México City, DF, Mexico

Received 26 July 2011; Accepted 21 December 2011

Academic Editor: Arcady Zhukov

Copyright © 2012 Raúl Valenzuela. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Valenzuela, Magnetic Ceramics, Cambridge University Press, 2005.
  2. W. H. Bragg, “The structure of the spinel group of crystals,” Philosophical Magazine, vol. 30, no. 176, pp. 305–315, 1915. View at Publisher · View at Google Scholar
  3. Y. Yafet and C. Kittel, “Antiferromagnetic arrangements in ferrites,” Physical Review, vol. 87, no. 2, pp. 290–294, 1952. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Bertaut and F. Forrat, “Structure des ferrites ferrimagnetiques des terres rares,” Comptes Rendus de l'Académie des Sciences, vol. 242, pp. 382–384, 1956. View at Google Scholar
  5. S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3,” Journal of Physics and Chemistry of Solids, vol. 3, no. 1-2, pp. 30–36, 1957. View at Google Scholar · View at Scopus
  6. M. A. Gilleo, “Ferromagnetic Insulators: garnets,” in Ferromagnetic Materials, E. R. Wohlfarth, Ed., vol. 2, North Holland, The Netherlands, 1980. View at Google Scholar
  7. G. Wrinkler, “Crystallography, chemistry and technology of ferrites,” in Magnetic Properties of Materials, J. Smit, Ed., p. 20, McGraw-Hill, London, UK, 1971. View at Google Scholar
  8. G. Albanese, M. Carbucicchio, and A. Deriu, “Substitution of Fe3+ by Al3+ in the trigonal sites of M-type hexagonal ferrites,” Il Nuovo Cimento B, vol. 15, no. 2, pp. 147–158, 1973. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Abe, Y. Kitamoto, K. Matsumoto, M. Zhang, and P. Li, “Ultrasound enhanced ferrite plating; bringing breakthrough in ferrite coating synthesized from aqueous solution,” IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 3649–3651, 1997. View at Google Scholar · View at Scopus
  10. J. J. Cuomo, R. J. Gambino, J. M. E. Harper, J. D. Kuptsis, and J. C. Webber, “Significance of negative ion formation in sputtering and sims analysis,” Journal of Vacuum Science & Technology, vol. 15, no. 2, pp. 281–287, 1978. View at Google Scholar · View at Scopus
  11. D. Dijkkamp, T. Venkatesan, X. D. Wu et al., “Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material,” Applied Physics Letters, vol. 51, no. 8, pp. 619–621, 1987. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Lind, S. D. Berry, G. Chern, H. Mathias, and L. R. Testardi, “Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy,” Physical Review B, vol. 45, no. 4, pp. 1838–1850, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Suzuki, “Epitaxial spinel ferrite thin films,” Annual Review of Materials Science, vol. 31, pp. 265–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Suzuki, R. B. Van Dover, E. M. Gyorgy, J. M. Phillips, and R. J. Felder, “Exchange coupling in single-crystalline spinel-structure (Mn,Zn)Fe2O4/CoFe2O4 bilayers,” Physical Review B, vol. 53, no. 21, pp. 14016–14019, 1996. View at Google Scholar · View at Scopus
  15. J. M. Yang, W. J. Tsuo, and F. S. Yen, “Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates,” Journal of Solid State Chemistry, vol. 145, no. 1, pp. 50–57, 1999. View at Publisher · View at Google Scholar
  16. J. Zhou, J. Ma, C. Sun et al., “Low-temperature synthesis of NiFe2O4 by a hydrothermal method,” Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3535–3537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. V. P. M. Shafi, Y. Koltypin, A. Gedanken et al., “Sonochemical preparation of nanosized amorphous NiFe2O4 particles,” Journal of Physical Chemistry B, vol. 101, no. 33, pp. 6409–6414, 1997. View at Google Scholar · View at Scopus
  18. S. Prasad and N. S. Gajbhiye, “Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique,” Journal of Alloys and Compounds, vol. 265, no. 1-2, pp. 87–92, 1998. View at Google Scholar
  19. D. -H. Chen and X. -R. He, “Synthesis of nickel ferrite nanoparticles by sol-gel method,” Materials Research Bulletin, vol. 36, no. 7-8, pp. 1369–1377, 2001. View at Publisher · View at Google Scholar
  20. Y. Shi, J. Ding, X. Liu, and J. Wang, “NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying,” Journal of Magnetism and Magnetic Materials, vol. 205, no. 2, pp. 249–254, 1999. View at Publisher · View at Google Scholar
  21. J. Liu, H. He, X. Jin, Z. Hao, and Z. Hu, “Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties,” Materials Research Bulletin, vol. 36, no. 13-14, pp. 2357–2363, 2001. View at Publisher · View at Google Scholar
  22. A. Kale, S. Gubbala, and R. D. K. Misra, “Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique,” Journal of Magnetism and Magnetic Materials, vol. 277, no. 3, pp. 350–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Beji, T. Ben Chaabane, L. S. Smiri et al., “Synthesis of nickel-zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies,” Physica Status Solidi A, vol. 203, no. 3, pp. 504–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Maensiri, C. Masingboon, B. Boonchom, and S. Seraphin, “A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white,” Scripta Materialia, vol. 56, no. 9, pp. 797–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Yang, F. Liu, T. Ren et al., “Fully integrated ferrite-based inductors for RF ICs,” Sensors and Actuators A, vol. 130-131, pp. 365–370, 2006. View at Publisher · View at Google Scholar
  26. Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, “Ferrite-piezoelectric multilayers for magnetic field sensors,” IEEE Sensors Journal, vol. 6, no. 4, Article ID 1661574, pp. 935–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Pardavi-Horvath, “Microwave applications of soft ferrites,” Journal of Magnetism and Magnetic Materials, vol. 215, pp. 171–183, 2000. View at Publisher · View at Google Scholar
  28. L. D. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Physik Z. Sowjetunion, vol. 8, pp. 153–169, 1935. View at Google Scholar
  29. N. Mo, Y. Y. Song, and C. E. Patton, “High-field microwave effective linewidth in polycrystalline ferrites: physical origins and intrinsic limits,” Journal of Applied Physics, vol. 97, no. 9, Article ID 093901, pp. 1–9, 2005. View at Publisher · View at Google Scholar
  30. N. Mo, J. J. Green, P. Krivosik, and C. E. Patton, “The low field microwave effective linewidth in polycrystalline ferrites,” Journal of Applied Physics, vol. 101, no. 2, Article ID 023914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Valenzuela, R. Zamorano, G. Alvarez, M. P. Gutiérrez, and H. Montiel, “Magnetoimpedance, ferromagnetic resonance, and low field microwave absorption in amorphous ferromagnets,” Journal of Non-Crystalline Solids, vol. 353, no. 8–10, pp. 768–772, 2007. View at Publisher · View at Google Scholar
  32. H. Montiel, G. Alvarez, I. Betancourt, R. Zamorano, and R. Valenzuela, “Correlations between low-field microwave absorption and magnetoimpedance in Co-based amorphous ribbons,” Applied Physics Letters, vol. 86, no. 7, Article ID 072503, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Knobel, M. Vazquez, and L. Kraus, “Giant Matgnetoimpedance,” in Handbook of Magnetic Materials, K. H. J. Buschow, Ed., vol. 15, p. 497, Elsevier Science, 2003. View at Google Scholar
  34. A. Verma, M. I. Alam, R. Chatterjee, T. C. Goel, and R. G. Mendiratta, “Development of a new soft ferrite core for power applications,” Journal of Magnetism and Magnetic Materials, vol. 300, no. 2, pp. 500–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Zaspalis, V. Tsakaloudi, E. Papazoglou, M. Kolenbrander, R. Guenther, and P. V. D. Valk, “Development of a new MnZn-ferrite soft magnetic material for high temperature power applications,” Journal of Electroceramics, vol. 13, no. 1–3, pp. 585–591, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Brandon, E. E. Wesseling, V. Chang, and W. B. Kuhn, “Printed microinductors on flexible substrates for power applications,” IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 3, pp. 517–523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Amalou, E. L. Bornand, and M. A. M. Gijs, “Batch-type millimeter-size transformers for miniaturized power applications,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2999–3003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Belloy, S. Thurre, E. Walckiers, A. Sayah, and M. A. M. Gijs, “Introduction of powder blasting for sensor and microsystem applications,” Sensors and Actuators. A, vol. 84, no. 3, pp. 330–337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Preisach, “Über die magnetische Nachwirkung,” Zeitschrift für Physik, vol. 94, no. 5-6, pp. 277–302, 1935. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Angeli, E. Cardelli, and E. Della Torre, “Modelling of magnetic cores for power electronics applications,” Physica B, vol. 275, no. 1–3, pp. 154–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. P. R. Wilson, J. N. Ross, and A. D. Brown, “Modeling frequency-dependent losses in ferrite cores,” IEEE Transactions on Magnetics, vol. 40, no. 3, pp. 1537–1541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Stojanovic, M. Damnjanovic, V. Desnica et al., “High-performance zig-zag and meander inductors embedded in ferrite material,” Journal of Magnetism and Magnetic Materials, vol. 297, no. 2, pp. 76–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. W. Li, L. Guoqing, L. Chen, W. Yuping, and C. K. Ong, “Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency,” Journal of Applied Physics, vol. 99, no. 6, Article ID 063905, 2006. View at Publisher · View at Google Scholar
  44. Y. B. Feng, T. Qiu, C. Y. Shen, and X. -Y. Li, “Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials,” IEEE Transactions on Magnetics, vol. 42, no. 3, pp. 363–368, 2006. View at Publisher · View at Google Scholar
  45. B. W. Li, Y. Shen, Z.-X. Yue, and C.-W. Nan, “Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites,” Applied Physics Letters, vol. 89, no. 13, Article ID 132504, 2006. View at Publisher · View at Google Scholar
  46. R. C. Che, C. Y. Zhi, C. Y. Liang, and X. G. Zhou, “Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite,” Applied Physics Letters, vol. 88, no. 3, Article ID 033105, pp. 1–3, 2006. View at Publisher · View at Google Scholar
  47. C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, and J. Guo, “Microwave attenuation of multiwalled carbon nanotube-fused silica composites,” Applied Physics Letters, vol. 87, no. 12, Article ID 123103, pp. 1–3, 2005. View at Publisher · View at Google Scholar
  48. Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, “Novel carbon nanotube—Polystyrene foam composites for electromagnetic interference shielding,” Nano Letters, vol. 5, no. 11, pp. 2131–2134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. H. A. Lowenstam, “Magnetite in denticle capping in recent chitons (Polyplacophora),” Bulletin Geological Society of America, vol. 73, no. 4, pp. 435–438, 1962. View at Google Scholar
  50. C. Zhang, H. Vali, C. S. Romaner, T. J. Phelps, and S. V. Liu, “Formation of single-domain magnetite by a thermophilic bacterium,” American Mineralogist, vol. 83, no. 11-12, pp. 1409–1418, 1998. View at Google Scholar · View at Scopus
  51. I. Šafařík and M. Šafaříková, “Magnetic nanoparticles and biosciences,” Monatshefte fur Chemie, vol. 133, no. 6, pp. 737–759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. C. M. Fu, Y. F. Wang, Y. F. Guo, T. Y. Lin, and J. S. Chiu, “In vivo bio-distribution of intravenously injected Tc-99 m labeled ferrite nanoparticles bounded with biocompatible medicals,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4120–4122, 2005. View at Publisher · View at Google Scholar
  53. C. R. Martin and D. T. Mitchell, “Nanomaterials in analytical chemistry,” Analytical Chemistry, vol. 70, no. 9, pp. 322A–327A, 1998. View at Google Scholar
  54. T. C. Yeh, W. Zhang, S. T. Ildstad, and C. Ho, “In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles,” Magnetic Resonance in Medicine, vol. 33, no. 2, pp. 200–208, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Jordan, R. Scholz, K. Maier-Hauff et al., “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 118–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Giri, P. Pradhan, T. Sriharsha, and D. Bahadur, “Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications,” Journal of Applied Physics, vol. 97, no. 10, Article ID 10Q916, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. D. H. Kim, S. H. Lee, K. N. Kim, K. M. Kim, I. B. Shim, and Y. K. Lee, “Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 320–327, 2005. View at Publisher · View at Google Scholar
  58. T. Matsunaga and S. Kamiya, “Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization,” Applied Microbiology and Biotechnology, vol. 26, no. 4, pp. 328–332, 1987. View at Google Scholar · View at Scopus
  59. I. Šafařík and M. Šafaříková, “Use of magnetic techniques for the isolation of cells,” Journal of Chromatography B, vol. 722, no. 1-2, pp. 33–53, 1999. View at Publisher · View at Google Scholar
  60. K. Sode, S. Kudo, T. Sakaguchi, N. Nakamura, and T. Matsunaga, “Application of bacterial magnetic particles for highly selective mRNA recovery system,” Biotechnology Techniques, vol. 7, no. 9, pp. 688–694, 1993. View at Publisher · View at Google Scholar · View at Scopus