Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2012 (2012), Article ID 808260, 13 pages
http://dx.doi.org/10.1155/2012/808260
Review Article

Smoking and Idiopathic Pulmonary Fibrosis

1MedImmune, LLC., One MedImmune Way, Gaithersburg, MD 20878, USA
2MedImmune, Ltd., Milstein Building, Granta Park Cambridge, CB21 6GH, UK

Received 25 May 2011; Revised 9 August 2011; Accepted 7 December 2011

Academic Editor: Marco Chilosi

Copyright © 2012 Chad K. Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Raghu, H. R. Collard, J. J. Egan et al., “An Official ATS/ERS/JRS/ALAT Statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 6, pp. 788–824, 2011. View at Publisher · View at Google Scholar · View at PubMed
  2. G. Raghu, D. Weycker, J. Edelsberg, W. Z. Bradford, and G. Oster, “Incidence and prevalence of idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 7, pp. 810–816, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. V. S. Taskar and D. B. Coultas, “Is idiopathic pulmonary fibrosis an environmental disease?” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 293–298, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. K. B. Baumgartner, J. M. Samet, D. B. Coultas et al., “Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study,” American Journal of Epidemiology, vol. 152, no. 4, pp. 307–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Hubbard, S. Lewis, K. Richards, I. Johnston, and J. Britton, “Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis,” Lancet, vol. 347, no. 8997, pp. 284–289, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Steele, M. C. Speer, J. E. Loyd et al., “Clinical and pathologic features of familial interstitial pneumonia,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 9, pp. 1146–1152, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. H. Ryu, T. V. Colby, T. E. Hartman, and R. Vassallo, “Smoking-related interstitial lung diseases: a concise review,” European Respiratory Journal, vol. 17, no. 1, pp. 122–132, 2001. View at Publisher · View at Google Scholar
  8. T. E. King Jr., U. Costabel, J.-F. Cordier et al., “Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS),” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 646–664, 2000. View at Google Scholar
  9. M. Turner-Warwick, B. Burrows, and A. Johnson, “Cryptogenic fibrosing alveolitis: clinical features and their influence on survival,” Thorax, vol. 35, no. 3, pp. 171–180, 1980. View at Google Scholar · View at Scopus
  10. L. C. Watters, M. I. Schwarz, and R. M. Cherniack, “Idiopathic pulmonary fibrosis. Pretreatment bronchoalveolar lavage cellular constituents and their relationships with lung histopathology and clinical response to therapy,” American Review of Respiratory Disease, vol. 135, no. 3, pp. 696–704, 1987. View at Google Scholar · View at Scopus
  11. D. A. Schwartz, R. A. Helmers, J. R. Galvin et al., “Determinants of survival in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 2 I, pp. 450–454, 1994. View at Google Scholar · View at Scopus
  12. C. B. Carrington, E. A. Gaensler, and R. E. Coutu, “Natural history and treated course of usual and desquamative interstitial pneumonia,” New England Journal of Medicine, vol. 298, no. 15, pp. 801–809, 1978. View at Google Scholar · View at Scopus
  13. I. D. A. Johnston, R. J. Prescott, J. C. Chalmers, and R. M. Rudd, “British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management,” Thorax, vol. 52, no. 1, pp. 38–44, 1997. View at Google Scholar
  14. K. B. Baumgartner, J. M. Samet, C. A. Stidley, T. V. Colby, and J. A. Waldron, “Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 1, pp. 242–248, 1997. View at Google Scholar · View at Scopus
  15. K. M. Antoniou, D. M. Hansell, M. B. Rubens et al., “Idiopathic pulmonary fibrosis: outcome in relation to smoking status,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 2, pp. 190–194, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. E. King Jr., J. A. Tooze, M. I. Schwarz, K. R. Brown, and R. M. Cherniack, “Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 7, pp. 1171–1181, 2001. View at Google Scholar · View at Scopus
  17. M. R. Becklake and U. Lalloo, “The “healthy smoker”: a phenomenon of health selection?” Respiration, vol. 57, no. 3, pp. 137–144, 1990. View at Google Scholar
  18. M. Bednarek, D. Gorecka, J. Wielgomas et al., “Smokers with airway obstruction are more likely to quit smoking,” Thorax, vol. 61, no. 10, pp. 869–873, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Selman, M. Rojas, A. L. Mora, and A. Pardo, “Aging and interstitial lung diseases: unraveling an old forgotten player in the pathogenesis of lung fibrosis,” Seminars in Respiratory and Critical Care Medicine, vol. 31, no. 5, pp. 607–617, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. W. MacNee, “Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 2, no. 1, pp. 50–60, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. V. Cottin, H. Nunes, P.-Y. Brillet et al., “Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity,” European Respiratory Journal, vol. 26, no. 4, pp. 586–593, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. M. Mejía, G. Carrillo, J. Rojas-Serrano et al., “Idiopathic pulmonary fibrosis and emphysema: decreased survival associated with severe pulmonary arterial hypertension,” Chest, vol. 136, no. 1, pp. 10–15, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. G. R. Washko, G. M. Hunninghake, I. E. Fernandez et al., “Lung volumes and emphysema in smokers with interstitial lung abnormalities,” New England Journal of Medicine, vol. 364, no. 10, pp. 897–906, 2011. View at Publisher · View at Google Scholar · View at PubMed
  24. Y. Kawabata, E. Hoshi, K. Murai et al., “Smoking-related changes in the background lung of specimens resected for lung cancer: a semiquantitative study with correlation to postoperative course,” Histopathology, vol. 53, no. 6, pp. 707–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. L. Katzenstein, S. Mukhopadhyay, C. Zanardi, and E. Dexter, “Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens,” Human Pathology, vol. 41, no. 3, pp. 316–325, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. M. Harris, I. D. A. Johnston, R. Rudd, A. J. Newman Taylor, and P. Cullinan, “Cryptogenic fibrosing alveolitis and lung cancer: the BTS study,” Thorax, vol. 65, no. 1, pp. 70–76, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. J. Gross and G. W. Hunninghake, “Idiopathic pulmonary fibrosis,” New England Journal of Medicine, vol. 345, no. 7, pp. 517–525, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. V. J. Thannickal and J. C. Horowitz, “Evolving concepts of apoptosis in idiopathic pulmonary fibrosis,” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 350–356, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Desmoulière, C. Chaponnier, and G. Gabbiani, “Tissue repair, contraction, and the myofibroblast,” Wound Repair and Regeneration, vol. 13, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. A. Desmouliere, M. Redard, I. Darby, and G. Gabbiani, “Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar,” American Journal of Pathology, vol. 146, no. 1, pp. 56–66, 1995. View at Google Scholar · View at Scopus
  31. Y. P. Moodley, N. L. A. Misso, A. K. Scaffidi et al., “Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 4, pp. 490–498, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. A. Murray, R. L. Argentieri, F. X. Farrell et al., “Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFβ1, IL-13 and CCL2,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 10, pp. 2174–2182, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Y. Liu, W. Gao, and D. Zhang, “Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-β1 in a coculture system,” Clinical and Experimental Medicine, vol. 10, no. 3, pp. 159–167, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Carnevali, S. Petruzzelli, B. Longoni et al., “Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts,” American Journal of Physiology, vol. 284, no. 6, pp. L955–L963, 2003. View at Google Scholar · View at Scopus
  35. Y. P. Moodley, P. Caterina, A. K. Scaffidi et al., “Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis,” Journal of Pathology, vol. 202, no. 4, pp. 486–495, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. T. M. Maher, A. U. Wells, and G. J. Laurent, “Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms?” European Respiratory Journal, vol. 30, no. 5, pp. 835–839, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. J. P. Thiery, “Epithelial-mesenchymal transitions in development and pathologies,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 740–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. Willis and Z. Borok, “TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease,” American Journal of Physiology, vol. 293, no. 3, pp. L525–L534, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. U. Valcourt, M. Kowanetz, H. Niimi, C. H. Heldin, and A. Moustakas, “TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition,” Molecular Biology of the Cell, vol. 16, no. 4, pp. 1987–2002, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. V. Dasari, M. Gallup, H. Lemjabbar, I. Maltseva, and N. McNamara, “Epithelial-mesenchymal transition in lung cancer: is tobacco the “smoking gun”?” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 1, pp. 3–9, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. Zavadil and E. P. Böttinger, “TGF-β and epithelial-to-mesenchymal transitions,” Oncogene, vol. 24, no. 37, pp. 5764–5774, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Zavadil, L. Cermak, N. Soto-Nieves, and E. P. Böttinger, “Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition,” EMBO Journal, vol. 23, no. 5, pp. 1155–1165, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. Z. Borok, S. I. Danto, R. L. Lubman, Y. Cao, M. C. Williams, and E. D. Crandall, “Modulation of T1α expression with alveolar epithelial cell phenotype in vitro,” American Journal of Physiology, vol. 275, no. 1, pp. L155–L164, 1998. View at Google Scholar · View at Scopus
  45. S. I. Danto, J. M. Shannon, Z. Borok, S. M. Zabski, and E. D. Crandall, “Reversible transdifferentiation of alveolar epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 5, pp. 497–502, 1995. View at Google Scholar · View at Scopus
  46. J. S. Torday, E. Torres, and V. K. Rehan, “The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro,” Pediatric Pathology and Molecular Medicine, vol. 22, no. 3, pp. 189–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. K. K. Kim, M. C. Kugler, P. J. Wolters et al., “Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13180–13185, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. R. Kalluri and E. G. Neilson, “Epithelial-mesenchymal transition and its implications for fibrosis,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1776–1784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Selgas, J. Jimenez-Heffernan, M. López-Cabrera et al., “On the epithelial-mesenchymal transition of mesothelial cells,” Kidney International, vol. 66, no. 2, pp. 866–867, 2004. View at Google Scholar
  50. S. Grünert, M. Jechlinger, and H. Beug, “Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis,” Nature Reviews Molecular Cell Biology, vol. 4, no. 8, pp. 657–665, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. Iwano, D. Plieth, T. M. Danoff, C. Xue, H. Okada, and E. G. Neilson, “Evidence that fibroblasts derive from epithelium during tissue fibrosis,” Journal of Clinical Investigation, vol. 110, no. 3, pp. 341–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Kasai, J. T. Allen, R. M. Mason, T. Kamimura, and Z. Zhang, “TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT),” Respiratory Research, vol. 6, article 56, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. C. Willis, J. M. Liebler, K. Luby-Phelps et al., “Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis,” American Journal of Pathology, vol. 166, no. 5, pp. 1321–1332, 2005. View at Google Scholar · View at Scopus
  54. N. Hashimoto, H. Jin, T. Liu, S. W. Chensue, and S. H. Phan, “Bone marrow-derived progenitor cells in pulmonary fibrosis,” Journal of Clinical Investigation, vol. 113, no. 2, pp. 243–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Bucala, L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami, “Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair,” Molecular Medicine, vol. 1, no. 1, pp. 71–81, 1994. View at Google Scholar · View at Scopus
  56. R. A. Reilkoff, R. Bucala, and E. L. Herzog, “Fibrocytes: emerging effector cells in chronic inflammation,” Nature Reviews Immunology, vol. 11, no. 6, pp. 427–435, 2011. View at Publisher · View at Google Scholar · View at PubMed
  57. R. J. Phillips, M. D. Burdick, K. Hong et al., “Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis,” Journal of Clinical Investigation, vol. 114, no. 3, pp. 438–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Moeller, S. E. Gilpin, K. Ask et al., “Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 7, pp. 588–594, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. D. D. Shao, R. Suresh, V. Vakil, R. H. Gomer, and D. Pilling, “Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation,” Journal of Leukocyte Biology, vol. 83, no. 6, pp. 1323–1333, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. R. Abe, S. C. Donnelly, T. Peng, R. Bucala, and C. N. Metz, “Peripheral blood fibrocytes: differentiation pathway and migration to wound sites,” Journal of Immunology, vol. 166, no. 12, pp. 7556–7562, 2001. View at Google Scholar · View at Scopus
  61. J. Chesney, C. Metz, A. B. Stavitsky, M. Bacher, and R. Bucala, “Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes,” Journal of Immunology, vol. 160, no. 1, pp. 419–425, 1998. View at Google Scholar · View at Scopus
  62. M. Schmidt, G. Sun, M. A. Stacey, L. Mori, and S. Mattoli, “Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma,” Journal of Immunology, vol. 171, no. 1, pp. 380–389, 2003. View at Google Scholar · View at Scopus
  63. S. Abe, C. Boyer, X. Liu et al., “Cells derived from the circulation contribute to the repair of lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 11, pp. 1158–1163, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. B. B. Moore, J. E. Kolodsick, V. J. Thannickal et al., “CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury,” American Journal of Pathology, vol. 166, no. 3, pp. 675–684, 2005. View at Google Scholar · View at Scopus
  65. B. B. Moore, L. Murray, A. Das, C. A. Wilke, A. B. Herrygers, and G. B. Toews, “The role of CCL12 in the recruitment of fibrocytes and lung fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 2, pp. 175–181, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. A. Hancock, L. Armstrong, R. Gama, and A. Millar, “Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung,” American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 1, pp. 60–65, 1998. View at Google Scholar · View at Scopus
  68. Y. Zhou, J. N. Murthy, D. Zeng, L. Belardinelli, and M. R. Blackburn, “Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis,” PLoS ONE, vol. 5, no. 2, Article ID e9224, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. J. Savill, “Apoptosis in resolution of inflammation,” Journal of Leukocyte Biology, vol. 61, no. 4, pp. 375–380, 1997. View at Google Scholar · View at Scopus
  70. M. M. Tiemessen, A. L. Jagger, H. G. Evans, M. J. C. Van Herwijnen, S. John, and L. S. Taams, “CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19446–19451, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. L. A. Murray, R. Rosada, A. P. Moreira et al., “Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages,” PLoS ONE, vol. 5, no. 3, Article ID e9683, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. S. K. Mathai, M. Gulati, X. Peng et al., “Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype,” Laboratory Investigation, vol. 90, no. 6, pp. 812–823, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. D. Pilling, D. Roife, M. Wang et al., “Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P,” Journal of Immunology, vol. 179, no. 6, pp. 4035–4044, 2007. View at Google Scholar · View at Scopus
  74. L. A. Murray, Q. Chen, M. S. Kramer et al., “TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 1, pp. 154–162, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. D. F. Church and W. A. Pryor, “Free-radical chemistry of cigarette smoke and its toxicological implications,” Environmental Health Perspectives, vol. 64, pp. 111–126, 1985. View at Google Scholar · View at Scopus
  76. W. A. Pryor, K. Stone, C. E. Cross, L. Machlin, and L. Packer, “Oxidants in cigarette smoke: radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite,” Annals of the New York Academy of Sciences, vol. 686, pp. 12–28, 1993. View at Google Scholar · View at Scopus
  77. P. J. Barnes, S. D. Shapiro, and R. A. Pauwels, “Chronic obstructive pulmonary disease: molecular and cellular mechanisms,” European Respiratory Journal, vol. 22, no. 4, pp. 672–688, 2003. View at Google Scholar · View at Scopus
  78. E. M. Drost, K. M. Skwarski, J. Sauleda et al., “Oxidative stress and airway inflammation in severe exacerbations of COPD,” Thorax, vol. 60, no. 4, pp. 293–300, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. V. L. Kinnula, H. Ilumets, M. Myllärniemi, A. Sovijärvi, and P. Rytilä, “8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD,” European Respiratory Journal, vol. 29, no. 1, pp. 51–55, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. W. MacNee, “Pathogenesis of chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 2, no. 4, pp. 258–266, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. I. Rahman, S. K. Biswas, and A. Kode, “Oxidant and antioxidant balance in the airways and airway diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 222–239, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. T. Rangasamy, C. Y. Cho, R. K. Thimmulappa et al., “Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1248–1259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. S. D. Shapiro and E. P. Ingenito, “The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 5, pp. 367–372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. K. Chow, R. Rylander, and W. Pryor, “Cigarette smoking and oxidative damage in the lung,” Annals of the New York Academy of Sciences, vol. 686, pp. 289–298, 1993. View at Google Scholar · View at Scopus
  85. C. C. J. Zavitz, G. J. Gaschler, C. S. Robbins, F. M. Botelho, P. G. Cox, and M. R. Stampfli, “Impact of cigarette smoke on T and B cell responsiveness,” Cellular Immunology, vol. 253, no. 1-2, pp. 38–44, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. H. Fehrenbach, G. Zimmermann, E. Starke et al., “Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs,” Thorax, vol. 62, no. 5, pp. 438–446, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. C. S. Stevenson and M. G. Belvisi, “Preclinical animal models of asthma and chronic obstructive pulmonary disease,” Expert Review of Respiratory Medicine, vol. 2, no. 5, pp. 631–643, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. J. Cisneros-Lira, M. Gaxiola, C. Ramos, M. Selman, and A. Pardo, “Cigarette smoke exposure potentiates bleomycin-induced lung fibrosis in guinea pigs,” American Journal of Physiology, vol. 285, no. 4, pp. L949–L956, 2003. View at Google Scholar · View at Scopus
  89. J. C. Horowitz, F. J. Martinez, and V. J. Thannickal, “Mesenchymal cell fate and phenotypes in the pathogenesis of emphysema,” Journal of Chronic Obstructive Pulmonary Disease, vol. 6, no. 3, pp. 201–210, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. H. Kim, X. Liu, T. Kohyama et al., “Cigarette smoke stimulates MMP-1 production by human lung fibroblasts through the ERK1/2 pathway,” Journal of Chronic Obstructive Pulmonary Disease, vol. 1, no. 1, pp. 13–23, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. W. Ning, Y. Dong, J. Sun et al., “Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 480–490, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. S. I. Rennard, S. Togo, and O. Holz, “Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema,” Proceedings of the American Thoracic Society, vol. 3, no. 8, pp. 703–708, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. B. A. Mercer, V. Lemaître, C. A. Powell, and J. D'Armiento, “The epithelial cell in lung health and emphysema pathogenesis,” Current Respiratory Medicine Reviews, vol. 2, no. 2, pp. 101–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Hodge, G. Hodge, J. Ahern, H. Jersmann, M. Holmes, and P. N. Reynolds, “Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 6, pp. 748–755, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. L. A. Murray, D. A. Knight, L. McAlonan et al., “Deleterious role of TLR3 during hyperoxia-induced acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 12, pp. 1227–1237, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. K. A. Cavassani, M. Ishii, H. Wen et al., “TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events,” Journal of Experimental Medicine, vol. 205, no. 11, pp. 2609–2621, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. M. Korfei, C. Ruppert, P. Mahavadi et al., “Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 8, pp. 838–846, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. Q. Zhang, M. Raoof, Y. Chen et al., “Circulating mitochondrial DAMPs cause inflammatory responses to injury,” Nature, vol. 464, no. 7285, pp. 104–107, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. S. Hodge, G. Matthews, V. Mukaro et al., “Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 5, pp. 673–681, 2011. View at Publisher · View at Google Scholar · View at PubMed
  100. S. G. Kelsen, X. Duan, R. Ji, O. Perez, C. Liu, and S. Merali, “Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 5, pp. 541–550, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. J. C. Grutters and R. M. du Bois, “Genetics of fibrosing lung diseases,” European Respiratory Journal, vol. 25, no. 5, pp. 915–927, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. U. Hodgson, T. Laitinen, and P. Tukiainen, “Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland,” Thorax, vol. 57, no. 4, pp. 338–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. U. Hodgson, V. Pulkkinen, M. Dixon et al., “ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis,” American Journal of Human Genetics, vol. 79, no. 1, pp. 149–154, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. T. L. Gumienny, E. Brugnera, A. C. Tosello-Trampont et al., “CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration,” Cell, vol. 107, no. 1, pp. 27–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Brugnera, L. Haney, C. Grimsley et al., “Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex,” Nature Cell Biology, vol. 4, no. 8, pp. 574–582, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. C. D. DeBakker, L. B. Haney, J. M. Kinchen et al., “Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO,” Current Biology, vol. 14, no. 24, pp. 2208–2216, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. V. Pulkkinen, S. Bruce, J. Rintahaka et al., “ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses,” FASEB Journal, vol. 24, no. 4, pp. 1167–1177, 2010. View at Publisher · View at Google Scholar · View at PubMed
  108. M. Y. Armanios, J. J. L. Chen, J. D. Cogan et al., “Telomerase mutations in families with idiopathic pulmonary fibrosis,” New England Journal of Medicine, vol. 356, no. 13, pp. 1317–1326, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. K. D. Tsakiri, J. T. Cronkhite, P. J. Kuan et al., “Adult-onset pulmonary fibrosis caused by mutations in telomerase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7552–7557, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. J. T. Cronkhite, C. Xing, G. Raghu et al., “Telomere shortening in familial and sporadic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 729–737, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. J. K. Alder, J. J. L. Chen, L. Lancaster et al., “Short telomeres are a risk factor for idiopathic pulmonary fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13051–13056, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. A. Diaz de Leon, J. T. Cronkhite, A. L. Katzenstein et al., “Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations,” PloS ONE, vol. 5, no. 5, article e10680, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. E. Renzoni, P. Lympany, P. Sestini et al., “Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis,” Arthritis and Rheumatism, vol. 43, no. 7, pp. 1633–1640, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Whyte, R. Hubbard, R. Meliconi et al., “Increased risk of fibrosing alveolitis associated with interleukin-1 receptor antagonist and tumor necrosis factor-α gene polymorphisms,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 2 I, pp. 755–758, 2000. View at Google Scholar · View at Scopus
  115. R. W. Freeburn, H. Kendall, L. Dobson, J. Egan, N. J. Simler, and A. B. Millar, “The 3′ untranslated region of tumor necrosis factor-α is highly conserved in idiopathic pulmonary fibrosis,” European Cytokine Network, vol. 12, no. 1, pp. 33–38, 2001. View at Google Scholar · View at Scopus
  116. C. D. Morrison, A. C. Papp, A. Q. Hejmanowski, V. M. Addis, and T. W. Prior, “Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis,” Human Pathology, vol. 32, no. 5, pp. 521–528, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. P. Pantelidis, G. C. Fanning, A. U. Wells, K. I. Welsh, and R. M. Du Bois, “Analysis of tumor necrosis factor-α, lymphotoxin-α, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 6, pp. 1432–1436, 2001. View at Google Scholar · View at Scopus
  118. B. Hutyrová, P. Pantelidis, J. Drábek et al., “Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 2, pp. 148–151, 2002. View at Google Scholar
  119. P. Latsi, P. Pantelidis, D. Vassilakis, H. Sato, K. I. Welsh, and R. M. du Bois, “Analysis of IL-12 p40 subunit gene and IFN-γ G5644A polymorphisms in Idiopathic Pulmonary Fibrosis,” Respiratory Research, vol. 4, p. 6, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. H. A. Whittington, R. W. Freeburn, S. I. H. Godinho, J. Egan, Y. Haider, and A. B. Millar, “Analysis of an IL-10 polymorphism in idiopathic pulmonary fibrosis,” Genes and Immunity, vol. 4, no. 4, pp. 258–264, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. R. L. Riha, I. A. Yang, G. C. Rabnott, A. M. Tunnicliffe, K. M. Fong, and P. V. Zimmerman, “Cytokine gene polymorphisms in idiopathic pulmonary fibrosis,” Internal Medicine Journal, vol. 34, no. 3, pp. 126–129, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. M. Vasakova, I. Striz, A. Slavcev et al., “Correlation of IL-1alpha and IL-4 gene polymorphisms and clinical parameters in idiopathic pulmonary fibrosis,” Scandinavian Journal of Immunology, vol. 65, no. 3, pp. 265–270, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. M. Vasakova, I. Striz, A. Slavcev, S. Jandova, L. Kolesar, and J. Sulc, “Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis,” Tissue Antigens, vol. 67, no. 3, pp. 229–232, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. A. Xaubet, A. Marin-Arguedas, S. Lario et al., “Transforming growth factor-β1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 4, pp. 431–435, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. M. Selman, H. M. Lin, M. Montaño et al., “Surfactant protein A and B genetic variants predispose to idiopathic pulmonary fibrosis,” Human Genetics, vol. 113, no. 6, pp. 542–550, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. M. Checa, V. Ruiz, M. Montaño, R. Velázquez-Cruz, M. Selman, and A. Pardo, “MMP-1 polymorphisms and the risk of idiopathic pulmonary fibrosis,” Human Genetics, vol. 124, no. 5, pp. 465–472, 2008. View at Publisher · View at Google Scholar · View at PubMed
  127. S. Bournazos, J. Grinfeld, K. M. Alexander et al., “Association of FcγRIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression,” BMC Pulmonary Medicine, vol. 10, article 51, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. A. Xaubet, W. J. Fu, M. Li et al., “A haplotype of cyclooxygenase-2 gene is associated with idiopathic pulmonary fibrosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 27, no. 2, pp. 121–130, 2010. View at Google Scholar
  129. S. Bournazos, I. Bournazou, J. T. Murchison et al., “Fcγ receptor IIIb (CD16b) polymorphisms are associated with susceptibility to idiopathic pulmonary fibrosis,” Lung, vol. 188, no. 6, pp. 475–481, 2010. View at Publisher · View at Google Scholar · View at PubMed
  130. W. R. Coward, K. Watts, C. A. Feghali-Bostwick, A. Knox, and L. Pang, “Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis,” Molecular and Cellular Biology, vol. 29, no. 15, pp. 4325–4339, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. W. R. Coward, K. Watts, C. A. Feghali-Bostwick, G. Jenkins, and L. Pang, “Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis,” Molecular and Cellular Biology, vol. 30, no. 12, pp. 2874–2886, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. D. A. Lynch, W. D. Travis, N. L. Müller et al., “Idiopathic interstitial pneumonias: CT features,” Radiology, vol. 236, no. 1, pp. 10–21, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. C. Mueller-Mang, C. Grosse, K. Schmid, L. Stiebellehner, and A. A. Bankier, “What every radiologist should know about idiopathic interstitial pneumonias,” Radiographics, vol. 27, no. 3, pp. 595–615, 2007. View at Publisher · View at Google Scholar · View at PubMed
  134. G. W. Hunninghake, D. A. Lynch, J. R. Galvin et al., “Radiologic findings are strongly associated with a pathologic diagnosis of usual interstitial pneumonia,” Chest, vol. 124, no. 4, pp. 1215–1223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Sumikawa, T. Johkoh, K. Ichikado et al., “Usual interstitial pneumonia and chronic idiopathic interstitial pneumonia: analysis of CT appearance in 92 patients,” Radiology, vol. 241, no. 1, pp. 258–266, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. D. J. Lederer, P. L. Enright, S. M. Kawut et al., “Cigarette smoking is associated with subclinical parenchymal lung disease: the Multi-Ethnic Study of Atherosclerosis (MESA)-lung study,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 5, pp. 407–414, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. G. R. Washko, D. A. Lynch, S. Matsuoka et al., “Identification of early interstitial lung disease in smokers from the COPD gene study,” Academic Radiology, vol. 17, no. 1, pp. 48–53, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. P. J. Craig, A. U. Wells, S. Doffman et al., “Desquamative interstitial pneumonia, respiratory bronchiolitis and their relationship to smoking,” Histopathology, vol. 45, no. 3, pp. 275–282, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. J. Gribbin, R. B. Hubbard, I. Le Jeune, C. J. P. Smith, J. West, and L. J. Tata, “Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK,” Thorax, vol. 61, no. 11, pp. 980–985, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. D. A. Schwartz, R. K. Merchant, R. A. Helmers, S. R. Gilbert, C. S. Dayton, and G. W. Hunninghake, “The influence of cigarette smoking on lung function in patients with idiopathic pulmonary fibrosis,” American Review of Respiratory Disease, vol. 144, no. 3 I, pp. 504–506, 1991. View at Google Scholar · View at Scopus
  141. E. A. Regan, J. E. Hokanson, J. R. Murphy et al., “Genetic epidemiology of COPD (COPDGene) study design,” Journal of Chronic Obstructive Pulmonary Disease, vol. 7, no. 1, pp. 32–43, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. J. A. Bjoraker, J. H. Ryu, M. K. Edwin et al., “Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 199–203, 1998. View at Google Scholar · View at Scopus
  143. F. J. Martinez, “Idiopathic interstitial pneumonias: usual interstitial pneumonia versus nonspecific interstitial pneumonia,” Proceedings of the American Thoracic Society, vol. 3, no. 1, pp. 81–95, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. N. Walter, H. R. Collard, and T. E. King, “Current perspectives on the treatment of idiopathic pulmonary fibrosis,” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 330–338, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. R. M. Du Bois, “Strategies for treating idiopathic pulmonary fibrosis,” Nature Reviews Drug Discovery, vol. 9, no. 2, pp. 129–140, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. InterMune, “InterMune reports results of two phase 3 CAPACITY studies of pirfenidone in IPF,” 2009, http://phx.corporate-ir.net/phoenix.zhtml?c=100067&p=irol-newsArticle&ID=1251163&highlight=.
  147. H. J. Schünemann, R. Jaeschke, D. J. Cook et al., “An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 5, pp. 605–614, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. M. Nakanishi, Y. Demura, S. Mizuno et al., “Changes in HRCT findings in patients with respiratory bronchiolitis-associated interstitial lung disease after smoking cessation,” European Respiratory Journal, vol. 29, no. 3, pp. 453–461, 2007. View at Publisher · View at Google Scholar · View at PubMed