Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2013, Article ID 956081, 13 pages
http://dx.doi.org/10.1155/2013/956081
Review Article

Inspiratory Capacity during Exercise: Measurement, Analysis, and Interpretation

1Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
2UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul’s Hospital, Vancouver, BC, Canada V6Z 1Y6
3Respiratory Investigation Unit, Department of Medicine, Queen's University and Kingston General Hospital, Kingston, ON, Canada K7L 2V7

Received 20 July 2012; Accepted 21 December 2012

Academic Editor: Jose Alberto Neder

Copyright © 2013 Jordan A. Guenette et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Thoracic Society and American College of Chest Physicians, “ATS/ACCP Statement on cardiopulmonary exercise testing,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 2, pp. 211–277, 2003. View at Google Scholar
  2. J. V. Klas and J. A. Dempsey, “Voluntary versus reflex regulation of maximal exercise flow: volume loops,” American Review of Respiratory Disease, vol. 139, no. 1, pp. 150–156, 1989. View at Google Scholar · View at Scopus
  3. B. D. Johnson, I. M. Weisman, R. J. Zeballos, and K. C. Beck, “Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop,” Chest, vol. 116, no. 2, pp. 488–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Guenette, P. B. Dominelli, S. S. Reeve, C. M. Durkin, N. D. Eves, and A. W. Sheel, “Effect of thoracic gas compression and bronchodilation on the assessment of expiratory flow limitation during exercise in healthy humans,” Respiratory Physiology & Neurobiology, vol. 170, no. 3, pp. 279–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. D. Johnson, K. C. Seow, D. F. Pegelow, and J. A. Dempsey, “Adaptation of the inert gas FRC technique for use in heavy exercise,” Journal of Applied Physiology, vol. 68, no. 2, pp. 802–809, 1990. View at Google Scholar · View at Scopus
  6. C. F. Clarenbach, O. Senn, T. Brack, M. Kohler, and K. E. Bloch, “Monitoring of ventilation during exercise by a portable respiratory inductive plethysmograph,” Chest, vol. 128, no. 3, pp. 1282–1290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Aliverti, N. Stevenson, R. L. Dellacà, A. Lo Mauro, A. Pedotti, and P. M. A. Calverley, “Regional chest wall volumes during exercise in chronic obstructive pulmonary disease,” Thorax, vol. 59, no. 3, pp. 210–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. D. Johnson, K. C. Beck, L. J. Olson et al., “Ventilatory constraints during exercise in patients with chronic heart failure,” Chest, vol. 117, no. 2, pp. 321–332, 2000. View at Google Scholar · View at Scopus
  9. J. A. Guenette, J. D. Witt, D. C. McKenzie, J. D. Road, and A. W. Sheel, “Respiratory mechanics during exercise in endurance-trained men and women,” Journal of Physiology, vol. 581, no. 3, pp. 1309–1322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. O'Donnell, M. Lam, and K. A. Webb, “Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, pp. 1557–1565, 1998. View at Google Scholar · View at Scopus
  11. S. R. McClaran, C. A. Harms, D. F. Pegelow, and J. A. Dempsey, “Smaller lungs in women affect exercise hyperpnea,” Journal of Applied Physiology, vol. 84, no. 6, pp. 1872–1881, 1998. View at Google Scholar · View at Scopus
  12. D. E. O'Donnell, J. A. Guenette, F. Maltais, and K. A. Webb, “Decline of resting inspiratory capacity in COPD: the impact on breathing pattern, dyspnea, and ventilatory capacity during exercise,” Chest, vol. 141, pp. 753–762, 2012. View at Publisher · View at Google Scholar
  13. F. Di Marco, J. Milic-Emili, B. Boveri et al., “Effect of inhaled bronchodilators on inspiratory capacity and dyspnoea at rest in COPD,” European Respiratory Journal, vol. 21, no. 1, pp. 86–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. O'Donnell, T. Flüge, F. Gerken et al., “Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD,” European Respiratory Journal, vol. 23, no. 6, pp. 832–840, 2004. View at Google Scholar · View at Scopus
  15. B. Celli, R. ZuWallack, S. Wang, and S. Kesten, “Improvement in resting inspiratory capacity and hyperinflation with tiotropium in COPD patients with increased static lung volumes,” Chest, vol. 124, no. 5, pp. 1743–1748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. P. Albuquerque, L. E. Nery, D. S. Villaça et al., “Inspiratory fraction and exercise impairment in COPD patients GOLD stages II-III,” European Respiratory Journal, vol. 28, no. 5, pp. 939–944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. E. O'Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, pp. 770–777, 2001. View at Google Scholar · View at Scopus
  18. D. E. O'Donnell, C. D'Arsigny, M. Fitzpatrick, and K. A. Webb, “Exercise hypercapnia in advanced chronic obstructive pulmonary disease: the role of lung hyperinflation,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 5, pp. 663–668, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Casanova, C. Cote, J. P. De Torres et al., “Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 6, pp. 591–597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Zaman, S. Mahmood, and A. Altayeh, “Low inspiratory capacity to total lung capacity ratio is a risk factor for chronic obstructive pulmonary disease exacerbation,” American Journal of the Medical Sciences, vol. 339, no. 5, pp. 411–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. E. O'Donnell and P. Laveneziana, “The clinical importance of dynamic lung hyperinflation in COPD,” COPD: Journal of Chronic Obstructive Pulmonary Disease, vol. 3, no. 4, pp. 219–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. G. Stubbing, L. D. Pengelly, J. L. C. Morse, and N. L. Jones, “Pulmonary mechanics during exercise in normal males,” Journal of Applied Physiology, vol. 49, no. 3, pp. 506–510, 1980. View at Google Scholar · View at Scopus
  23. D. G. Stubbing, L. D. Pengelly, J. L. C. Morse, and N. L. Jones, “Pulmonary mechanics during exercise in subjects with chronic airflow obstruction,” Journal of Applied Physiology, vol. 49, no. 3, pp. 511–515, 1980. View at Google Scholar · View at Scopus
  24. C. Sinderby, J. Spahija, J. Beck et al., “Diaphragm activation during exercise in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1637–1641, 2001. View at Google Scholar · View at Scopus
  25. F. Bellemare and A. Grassino, “Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease,” Journal of Applied Physiology, vol. 55, no. 1, pp. 8–15, 1983. View at Google Scholar · View at Scopus
  26. S. Yan, D. Kaminski, and P. Sliwinski, “Reliability of inspiratory capacity for estimating end-expiratory lung volume changes during exercise in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 1, pp. 55–59, 1997. View at Google Scholar · View at Scopus
  27. T. E. Dolmage and R. S. Goldstein, “Repeatability of inspiratory capacity during incremental exercise in patients with severe COPD,” Chest, vol. 121, no. 3, pp. 708–714, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Belman, W. C. Botnick, and J. W. Shin, “Inhaled bronchodilators reduce dynamic hyperinflation during exercise in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 3, pp. 967–975, 1996. View at Google Scholar · View at Scopus
  29. F. J. Martinez, M. M. De Oca, R. I. Whyte, J. Stetz, S. E. Gay, and B. R. Celli, “Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 6, pp. 1984–1990, 1997. View at Google Scholar · View at Scopus
  30. D. E. O'Donnell, K. A. Webb, J. C. Bertley, L. K. L. Chau, and A. A. Conlan, “Mechanisms of relief of exertional breathlessness following unilateral bullectomy and lung volume reduction surgery in emphysema,” Chest, vol. 110, no. 1, pp. 18–27, 1996. View at Google Scholar · View at Scopus
  31. A. Somfay, J. Porszasz, S. M. Lee, and R. Casaburi, “Dose-response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients,” European Respiratory Journal, vol. 18, no. 1, pp. 77–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Palange, G. Valli, P. Onorati et al., “Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients,” Journal of Applied Physiology, vol. 97, no. 5, pp. 1637–1642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. E. O'Donnell, J. Travers, K. A. Webb et al., “Reliability of ventilatory parameters during cycle ergometry in multicentre trials in COPD,” European Respiratory Journal, vol. 34, no. 4, pp. 866–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Ofir, P. Laveneziana, K. A. Webb, and D. E. O'Donnell, “Ventilatory and perceptual responses to cycle exercise in obese women,” Journal of Applied Physiology, vol. 102, no. 6, pp. 2217–2226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. E. O'Donnell, C. D'Arsigny, S. Raj, H. Abdollah, and K. A. Webb, “Ventilatory assistance improves exercise endurance in stable congestive heart failure,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 6, pp. 1804–1811, 1999. View at Google Scholar · View at Scopus
  36. P. Laveneziana, D. E. O'Donnell, D. Ofir et al., “Effect of biventricular pacing on ventilatory and perceptual responses to exercise in patients with stable chronic heart failure,” Journal of Applied Physiology, vol. 106, no. 5, pp. 1574–1583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Richter, R. Voswinckel, H. Tiede et al., “Dynamic hyperinflation during exercise in patients with precapillary pulmonary hypertension,” Respiratory Medicine, vol. 106, no. 2, pp. 308–313, 2012. View at Publisher · View at Google Scholar
  38. J. A. Alison, J. A. Regnis, P. M. Donnelly, R. D. Adams, C. E. Sullivan, and P. T. P. Bye, “End-expiratory lung volume during arm and leg exercise in normal subjects and patients with cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, pp. 1450–1458, 1998. View at Google Scholar · View at Scopus
  39. M. P. Yeh, T. D. Adams, R. M. Gardner, and F. G. Yanowitz, “Effect of O2, N2, and CO2 composition on nonlinearity of Fleisch pneumotachograph characteristics,” Journal of Applied Physiology, vol. 56, no. 5, pp. 1423–1425, 1984. View at Google Scholar · View at Scopus
  40. M. R. Miller, J. Hankinson, V. Brusasco et al., “Standardisation of spirometry,” European Respiratory Journal, vol. 26, no. 2, pp. 319–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Pellegrino, J. R. Rodarte, and V. Brusasco, “Assessing the reversibility of airway obstruction,” Chest, vol. 114, no. 6, pp. 1607–1612, 1998. View at Google Scholar · View at Scopus
  42. American Association for Respiratory Care, “AARC guideline: body plethysmography: 2001 revision & update,” Respiratory Care, vol. 46, pp. 531–539.
  43. D. E. O'Donnell, M. Lam, and K. A. Webb, “Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 2, pp. 542–549, 1999. View at Google Scholar · View at Scopus
  44. D. C. Berton, M. Reis, A. C. B. Siqueira et al., “Effects of tiotropium and formoterol on dynamic hyperinflation and exercise endurance in COPD,” Respiratory Medicine, vol. 104, no. 9, pp. 1288–1296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Ofir, P. Laveneziana, K. A. Webb, Y. M. Lam, and D. E. O'Donnell, “Sex differences in the perceived intensity of breathlessness during exercise with advancing age,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1583–1593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Hsia, R. Casaburi, A. Pradhan, E. Torres, and J. Porszasz, “Physiological responses to linear treadmill and cycle ergometer exercise in COPD,” European Respiratory Journal, vol. 34, no. 3, pp. 605–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. M. Holm, W. M. Rodgers, R. G. Haennel et al., “Physiological responses to treadmill and cycle ergometer exercise testing in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 183, p. A3965, 2011. View at Google Scholar
  48. T. G. Babb, R. Viggiano, B. Hurley, B. Staats, and J. R. Rodarte, “Effect of mild-to-moderate airflow limitation on exercise capacity,” Journal of Applied Physiology, vol. 70, no. 1, pp. 223–230, 1991. View at Google Scholar · View at Scopus
  49. O. Bauerle, C. A. Chrusch, and M. Younes, “Mechanisms by which COPD affects exercise tolerance,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 57–68, 1998. View at Google Scholar · View at Scopus
  50. S. Mota, P. Casan, F. Drobnic et al., “Expiratory flow limitation during exercise in competition cyclists,” Journal of Applied Physiology, vol. 86, no. 2, pp. 611–616, 1999. View at Google Scholar · View at Scopus
  51. S. S. Wilkie, J. A. Guenette, P. B. Dominelli, and A. W. Sheel, “Effects of an aging pulmonary system on expiratory flow limitation and dyspnoea during exercise in healthy women,” European Journal of Applied Physiology, vol. 112, no. 6, pp. 2195–2204, 2012. View at Publisher · View at Google Scholar
  52. K. G. Henke, M. Sharratt, D. Pegelow, and J. A. Dempsey, “Regulation of end-expiratory lung volume during exercise,” Journal of Applied Physiology, vol. 64, no. 1, pp. 135–146, 1988. View at Google Scholar · View at Scopus
  53. B. D. Johnson, K. W. Saupe, and J. A. Dempsey, “Mechanical constraints on exercise hyperpnea in endurance athletes,” Journal of Applied Physiology, vol. 73, no. 3, pp. 874–886, 1992. View at Google Scholar · View at Scopus
  54. M. T. Sharratt, K. G. Henke, E. A. Aaron, D. F. Pegelow, and J. A. Dempsey, “Exercise-induced changes in functional residual capacity,” Respiration Physiology, vol. 70, no. 3, pp. 313–326, 1987. View at Google Scholar · View at Scopus
  55. A. Kiers, T. W. van der Mark, M. G. Woldring, and R. Peset, “Determination of the functional residual capacity during exercise,” Ergonomics, vol. 23, no. 10, pp. 955–959, 1980. View at Google Scholar · View at Scopus
  56. P. W. Collett and L. A. Engel, “Influence of lung volume on oxygen cost of resistive breathing,” Journal of Applied Physiology, vol. 61, no. 1, pp. 16–24, 1986. View at Google Scholar · View at Scopus
  57. J. Road, S. Newman, J. P. Derenne, and A. Grassino, “In vivo length-force relationship of canine diaphragm,” Journal of Applied Physiology, vol. 60, no. 1, pp. 63–70, 1986. View at Google Scholar · View at Scopus
  58. B. D. Johnson, W. G. Reddan, K. C. Seow, and J. A. Dempsey, “Mechanical constraints on exercise hyperpnea in a fit aging population,” American Review of Respiratory Disease, vol. 143, no. 5, pp. 968–977, 1991. View at Google Scholar · View at Scopus
  59. D. Jensen, K. A. Webb, G. A. L. Davies, and D. E. O'Donnell, “Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation,” Journal of Physiology, vol. 586, no. 19, pp. 4735–4750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. O. Diaz, C. Villafranca, H. Ghezzo et al., “Role of inspiratory capacity on exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest,” European Respiratory Journal, vol. 16, no. 2, pp. 269–275, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Ofir, P. Laveneziana, K. A. Webb, Y. M. Lam, and D. E. O'Donnell, “Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 6, pp. 622–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. A. Guenette, D. Jensen, K. A. Webb, D. Ofir, N. Raghavan, and D. E. O'Donnell, “Sex differences in exertional dyspnea in patients with mild COPD: physiological mechanisms,” Respiratory Physiology & Neurobiology, vol. 177, no. 3, pp. 218–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Garcia-Rio, V. Lores, O. Mediano et al., “Daily physical activity in patients with chronic obstructive pulmonary disease is mainly associated with dynamic hyperinflation,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 6, pp. 506–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. A. Guenette, K. A. Webb, and D. E. O'Donnell, “Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD?” European Respiratory Journal, vol. 40, no. 2, pp. 322–329, 2012. View at Publisher · View at Google Scholar
  65. I. Vogiatzis, O. Georgiadou, S. Golemati et al., “Patterns of dynamic hyperinflation during exercise and recovery in patients with severe chronic obstructive pulmonary disease,” Thorax, vol. 60, no. 9, pp. 723–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. E. O'Donnell, A. L. Hamilton, and K. A. Webb, “Sensory-mechanical relationships during high-intensity, constant-work-rate exercise in COPD,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1025–1035, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Laveneziana, K. A. Webb, J. Ora, K. Wadell, and D. E. O'Donnell, “Evolution of dyspnea during exercise in chronic obstructive pulmonary disease: impact of critical volume constraints,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 12, pp. 1367–1373, 2011. View at Publisher · View at Google Scholar
  68. F. Maltais, A. Hamilton, D. Marciniuk et al., “Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD,” Chest, vol. 128, no. 3, pp. 1168–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. D. E. O'Donnell, N. Voduc, M. Fitzpatrick, and K. A. Webb, “Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease,” European Respiratory Journal, vol. 24, no. 1, pp. 86–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. A. van Noord, J. L. Aumann, E. Janssens et al., “Effects of tiotropium with and without formoterol on airflow obstruction and resting hyperinflation in patients with COPD,” Chest, vol. 129, no. 3, pp. 509–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. D. E. O'Donnell, F. Sciurba, B. Celli et al., “Effect of fluticasone propionate/salmeterol on lung hyperinflation and exercise endurance in COPD,” Chest, vol. 130, no. 3, pp. 647–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. M. Peters, K. A. Webb, and D. E. O'Donnell, “Combined physiological effects of bronchodilators and hyperoxia on exertional dyspnoea in normoxic COPD,” Thorax, vol. 61, no. 7, pp. 559–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. N. C. Dean, J. K. Brown, R. B. Himelman, J. J. Doherty, W. M. Gold, and M. S. Stulbarg, “Oxygen may improve dyspnea and endurance in patients with chronic obstructive pulmonary disease and only mild hypoxemia,” American Review of Respiratory Disease, vol. 146, no. 4, pp. 941–945, 1992. View at Google Scholar · View at Scopus
  74. D. E. O'Donnell, C. D'Arsigny, and K. A. Webb, “Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 4, pp. 892–898, 2001. View at Google Scholar · View at Scopus
  75. D. A. Stein, B. L. Bradley, and W. C. Miller, “Mechanisms of oxygen effects on exercise in patients with chronic obstructive pulmonary disease,” Chest, vol. 81, no. 1, pp. 6–10, 1982. View at Google Scholar · View at Scopus
  76. R. Lane, A. Cockcroft, L. Adams, and A. Guz, “Arterial oxygen saturation and breathlessness in patients with chronic obstructive airways disease,” Clinical Science, vol. 72, no. 6, pp. 693–698, 1987. View at Google Scholar · View at Scopus
  77. D. E. O'Donnell, D. J. Bain, and K. A. Webb, “Factors contributing to relief of exertional breathlessness during hyperoxia in chronic airflow limitation,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 2, pp. 530–535, 1997. View at Google Scholar · View at Scopus
  78. C. R. Swinburn, J. M. Wakefield, and P. W. Jones, “Relationship between ventilation and breathlessness during exercise in chronic obstructive airways disease is not altered by prevention of hypoxaemia,” Clinical Science, vol. 67, no. 5, pp. 515–519, 1984. View at Google Scholar · View at Scopus
  79. N. D. Eves, S. R. Petersen, M. J. Haykowsky, E. Y. Wong, and R. L. Jones, “Helium-hyperoxia, exercise, and respiratory mechanics in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 7, pp. 763–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. G. I. Bruni, F. Gigliotti, B. Binazzi, I. Romagnoli, R. Duranti, and G. Scano, “Dyspnea, chest wall hyperinflation, and rib cage distortion in exercising patients with chronic obstructive pulmonary disease,” Medicine and Science in Sports and Exercise, vol. 44, no. 6, pp. 1049–1056, 2012. View at Publisher · View at Google Scholar
  81. T. Troosters, R. Casaburi, R. Gosselink, and M. Decramer, “Pulmonary rehabilitation in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 1, pp. 19–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Casaburi, A. Patessio, F. Ioli, S. Zanaboni, C. F. Donner, and K. Wasserman, “Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease,” American Review of Respiratory Disease, vol. 143, no. 1, pp. 9–18, 1991. View at Google Scholar · View at Scopus
  83. J. Porszasz, M. Emtner, S. Goto, A. Somfay, B. J. Whipp, and R. Casaburi, “Exercise training decreases ventilatory requirements and exercise-induced hyperinflation at submaximal intensities in patients with COPD,” Chest, vol. 128, no. 4, pp. 2025–2034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. D. E. O'Donnell, M. McGuire, L. Samis, and K. A. Webb, “General exercise training improves ventilatory and peripheral muscle strength and endurance in chronic airflow limitation,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 5, pp. 1489–1497, 1998. View at Google Scholar · View at Scopus
  85. R. Pellegrino, C. Villosio, U. Milanese, G. Garelli, J. R. Rodarte, and V. Brusasco, “Breathing during exercise in subjects with mild-to-moderate airflow obstruction: effects of physical training,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1697–1704, 1999. View at Google Scholar · View at Scopus
  86. F. Gigliotti, C. Coli, R. Bianchi et al., “Exercise training improves exertional dyspnea in patients with COPD: evidence of the role of mechanical factors,” Chest, vol. 123, no. 6, pp. 1794–1802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Puente-Maestu, Y. M. Abad, F. Pedraza, G. Sánchez, and W. W. Stringer, “A controlled trial of the effects of leg training on breathing pattern and dynamic hyperinflation in severe COPD,” Lung, vol. 184, no. 3, pp. 159–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Wadell, K. A. Webb, M. E. Preston et al., “Impact of pulmonary rehabilitation on the major dimensions of dyspnea in COPD,” COPD: Journal of Chronic Obstructive Pulmonary Disease. In press.