PPAR Research

PPAR Research / 2007 / Article
Special Issue

PPARs, RXRs, and Stem Cells

View this Special Issue

Review Article | Open Access

Volume 2007 |Article ID 092501 | https://doi.org/10.1155/2007/92501

Xingming Shi, Mark Hamrick, Carlos M. Isales, "Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone", PPAR Research, vol. 2007, Article ID 092501, 12 pages, 2007. https://doi.org/10.1155/2007/92501

Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone

Academic Editor: Z. Elizabeth Floyd
Received09 Jul 2007
Accepted16 Aug 2007
Published21 Nov 2007

Abstract

Peroxisome proliferator-activated receptor gamma (PPAR-γ) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-γ's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-γ isoforms, PPAR-γ2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-γ2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-γ2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.

References

  1. C. Blanquart, O. Fruchart, B. Fruchart, B. Steals, and C. Glineur, “Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 85, no. 2–5, pp. 267–273, 2003. View at: Publisher Site | Google Scholar
  2. S. R. Farmer, “Regulation of PPARγ activity during adipogenesis,” International Journal of Obesity, vol. 29, 1, pp. 13–16, 2005. View at: Publisher Site | Google Scholar
  3. S. L. Gray, E. Dalla Nora, and A. J. Vidal-Puig, “Mouse models of PPAR-γ deficiency: dissecting PPAR-γ's role in metabolic homoeostasis,” Biochemical Society Transactions, vol. 33, no. 5, pp. 1053–1058, 2005. View at: Publisher Site | Google Scholar
  4. M. Gurnel, “Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function,” Best Practice & Research. Clinical Endocrinology & Metabolism, vol. 19, no. 4, pp. 501–523, 2005. View at: Publisher Site | Google Scholar
  5. B. P. Kota, T. H. Huang, and B. D. Roufogalis, “An overview on biological mechanisms of PPARs,” Pharmacological Research, vol. 51, no. 2, pp. 58–94, 2005. View at: Publisher Site | Google Scholar
  6. M. A. Lazar, “PPAR gamma, 10 years later,” Biochimie, vol. 87, no. 1, pp. 9–13, 2005. View at: Publisher Site | Google Scholar
  7. M. Lehrke and M. A. Lazar, “The many faces of PPARgamma,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at: Publisher Site | Google Scholar
  8. S. Miard and L. Fajas, “Atypical transcriptional regulators and cofactors of PPAR-γ,” International Journal of Obesity, vol. 29, 1, pp. 10–12, 2005. View at: Publisher Site | Google Scholar
  9. L. A. Moraes, L. Piqueras, and D. Bishop-Bailey, “Peroxisome proliferator-activated receptors and inflammation,” Pharmacology & Therapeutics, vol. 110, no. 3, pp. 371–385, 2006. View at: Publisher Site | Google Scholar
  10. R. K. Semple, V. K. Chatterjee, and S. O'Rahilly, “PPAR-γ and human metabolic disease,” The Journal of Clinical Investigation, vol. 116, no. 3, pp. 581–589, 2006. View at: Publisher Site | Google Scholar
  11. B. Staels and J. C. Fruchart, “Therapeutic roles of peroxisome proliferator-activated receptor agonists,” Diabetes, vol. 54, no. 8, pp. 2460–2470, 2005. View at: Publisher Site | Google Scholar
  12. N. S. Tan, L. Michalik, B. Desvergne, and W. Wahli, “Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 93, no. 2–5, pp. 99–105, 2005. View at: Publisher Site | Google Scholar
  13. S. Theocharis, A. Margeli, P. Vielh, and G. Kouraklis, “Peroxisome proliferator-activated receptor-gamma ligands as cell-cycle modulators,” Cancer Treatment Reviews, vol. 30, no. 6, pp. 545–554, 2004. View at: Publisher Site | Google Scholar
  14. R. Mukherjee, L. Jow, G. E. Croston, and J. R. Paterniti Jr., “Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPAR-γ2 versus PPAR-γ1 and activation with retinoid X receptor agonists and antagonists,” The Journal of Biological Chemistry, vol. 272, no. 12, pp. 8071–8076, 1997. View at: Publisher Site | Google Scholar
  15. Y. Zhu, C. Qi, J. R. Korenberg et al., “Structural organization of mouse peroxisome proliferator-activated receptor-? (mPPAR-?) gene: alternative promoter use and different splicing yield two mPPAR-? isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7921–7925, 1995. View at: Publisher Site | Google Scholar
  16. Y. Barak, M. C. Nelson, E. S. Ong et al., “PPAR ? is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999. View at: Publisher Site | Google Scholar
  17. E. D. Rosen, P. Sarraf, A. E. Troy et al., “PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro,” Molecular Cell, vol. 4, no. 4, pp. 611–617, 1999. View at: Publisher Site | Google Scholar
  18. P. Tontonoz, E. Hu, R. A. Graves, A. L. Budavari, and B. M. Spiegelman, “mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer,” Genes & Development, vol. 8, no. 10, pp. 1224–1234, 1994. View at: Publisher Site | Google Scholar
  19. A. Chawla, E. J. Schwarz, D. D. Dimaculangan, and M. A. Lazar, “Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation,” Endocrinology, vol. 135, no. 2, pp. 798–800, 1994. View at: Publisher Site | Google Scholar
  20. K. Schoonjans, J. Peinado-Onsurbe, A. M. Lefebvre et al., “PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene,” The EMBO Journal, vol. 15, pp. 5336–5348, 1996. View at: Google Scholar
  21. P. Tontonoz, E. Hu, J. Devine, E. G. Beale, and B. M. Spiegelman, “PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene,” Molecular and Cellular Biology, vol. 15, no. 1, pp. 351–357, 1995. View at: Google Scholar
  22. B. I. Frohnert, T. Y. Hui, and D. A. Bernlohr, “Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene,” The Journal of Biological Chemistry, vol. 274, no. 7, pp. 3970–3977, 1999. View at: Publisher Site | Google Scholar
  23. C. W. Miller and J. M. Ntambi, “Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9443–9448, 1996. View at: Publisher Site | Google Scholar
  24. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-Deoxy-Δ12, -14prostaglandinj2 is a ligand for the adipocyte determination factor PPAR-γ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at: Publisher Site | Google Scholar
  25. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. Morris, and J. M. Lehmann, “A prostaglandin j2 metabolite binds peroxisome proliferator-activated receptor-γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at: Publisher Site | Google Scholar
  26. S. Altiok, M. Xu, and B. M. Spiegelman, “PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A,” Genes & Development, vol. 11, no. 15, pp. 1987–1998, 1997. View at: Google Scholar
  27. J. M. Gimble, C. E. Robinson, X. Wu et al., “Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells,” Molecular Pharmacology, vol. 50, no. 5, pp. 1087–1094, 1996. View at: Google Scholar
  28. E. Hu, P. Tontonoz, and P. M. Spiegelman, “Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR-γ and C/EPBα,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 9856–9860, 1995. View at: Publisher Site | Google Scholar
  29. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma),” The Journal of Biological Chemistry, vol. 270, no. 50, pp. 12953–12956, 1995. View at: Publisher Site | Google Scholar
  30. P. Tontonoz, E. Hu, and P. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at: Publisher Site | Google Scholar
  31. T. Akune, S. Ohba, S. Kamekura et al., “PPAR-? insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors,” The Journal of Clinical Investigation, vol. 113, no. 6, pp. 846–855, 2004. View at: Publisher Site | Google Scholar
  32. S. P. Bruder, N. Jaiswal, and S. E. Haynesworth, “Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation,” Journal of Cellular Biochemistry, vol. 64, no. 2, pp. 278–294, 1997. View at: Publisher Site | Google Scholar
  33. J. J. Minguell, A. Erices, and P. Conget, “Mesenchymal stem cells,” Experimental Biology and Medicine, vol. 226, pp. 507–520, 2001. View at: Google Scholar
  34. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at: Publisher Site | Google Scholar
  35. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at: Publisher Site | Google Scholar
  36. S. Ahdjoudj, F. Lasmoles, B. O. Oyajobi, A. Lomri, P. Delannoy, and P. J. Marie, “Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells,” Journal of Cellular Biochemistry, vol. 81, no. 1, pp. 23–38, 2001. View at: Publisher Site | Google Scholar
  37. T. Akune, S. Ohba, S. Kamekura et al., “PPAR? insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors,” The Journal of Clinical Investigation, vol. 113, no. 6, pp. 846–855, 2004. View at: Publisher Site | Google Scholar
  38. J. N. Beresford, J. H. Bennett, C. Devlin, P. S. Leboy, and M. E. Owen, “Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures,” Journal of Cell Science, vol. 83, no. 102, pt. 2, pp. 341–351, 1992. View at: Google Scholar
  39. F. Gori, T. Thomas, K. C. Hicok, T. C. Spelsberg, and B. L. Riggs, “Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation,” Journal of Bone and Mineral Research, vol. 14, pp. 1522–1535, 1999. View at: Publisher Site | Google Scholar
  40. R. K. Jaiswal, N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R. Marshak, and M. F. Pittenger, “Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase,” The Journal of Biological Chemistry, vol. 275, no. 13, pp. 9645–9652, 2000. View at: Publisher Site | Google Scholar
  41. B. Lecka-Czernik, E. J. Moerman, D. F. Grant, J. M. Lehmann, S. C. Manolagas, and R. L. Jilka, “Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation,” Endocrinology, vol. 143, no. 6, pp. 2376–2384, 2002. View at: Publisher Site | Google Scholar
  42. M. E. Nuttall and J. M. Gimble, “Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis?” Bone, vol. 27, no. 2, pp. 177–184, 2000. View at: Publisher Site | Google Scholar
  43. A. C. Maurin, P. M. Chavassieux, L. Frappart, P. D. Delmas, C. M. Serre, and P. J. Meunier, “Influence of mature adipocytes on osteoblast proliferation in human primary cocultures,” Bone, vol. 26, no. 5, pp. 485–489, 2000. View at: Publisher Site | Google Scholar
  44. S. K. Fried, D. A. Bunkin, and A. S. Greenberg, “Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid,” The Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 847–850, 1998. View at: Publisher Site | Google Scholar
  45. S. Verma, J. H. Rajaratnam, J. Denton, J. A. Hoyland, and R. J. Byers, “Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis,” Journal of Clinical Pathology, vol. 55, no. 9, pp. 693–698, 2002. View at: Publisher Site | Google Scholar
  46. J. Justesen, K. Stenderup, and M. S. Kassem, “Mesenchymal stem cells. Potential use in cell and gene therapy of bone loss caused by aging and osteoporosis,” Ugeskrift for Laeger, vol. 163, no. 40, pp. 5491–5495, 2001. View at: Google Scholar
  47. A. Grey, M. Bolland, G. Gamble et al., “The peroxisome proliferator-activated receptor-? agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 4, pp. 1305–1310, 2007. View at: Publisher Site | Google Scholar
  48. A. V. Schwartz, “Diabetes, TZDs, and Bone,” A Review of the Clinical Evidence, vol. 2006, Article ID 24502, 2006. View at: Google Scholar
  49. S. Miard and L. Fajas, “Atypical transcriptional regulators and cofactors of PPARγ,” International Journal of Obesity, vol. 29, 1, pp. 10–12, 2005. View at: Publisher Site | Google Scholar
  50. E. D. Rosen and L. Fajas, “Atypical transcriptional regulators and cofactors of PPARγ,” Prostaglandins, Leukotrienes, and Essential Fatty Acids, vol. 73, no. 1, pp. 31–34, 2005. View at: Publisher Site | Google Scholar
  51. C. W. Park, H. W. Kim, S. H. Ko et al., “Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1227–1238, 2007. View at: Publisher Site | Google Scholar
  52. J. A. Clowes, S. Khosla, R. Eastell et al., “Potential role of pancreatic and enteric hormones in regulating bone turnover,” Journal of Bone and Mineral Research, vol. 20, no. 9, pp. 1497–1506, 2005. View at: Publisher Site | Google Scholar
  53. I. R. Reid, J Cornish, and P. A. Baldock, “Nutrition-related peptides and bone homeostasis,” Journal of Bone and Mineral Research, vol. 21, no. 4, pp. 495–500, 2006. View at: Publisher Site | Google Scholar
  54. N. A. Tritos and E. G. Kokkotou, “The physiology and potential clinical applications of ghrelin, a novel peptide hormone,” Mayo Clinic Proceedings, vol. 81, no. 5, pp. 653–660, 2006. View at: Google Scholar
  55. N. Fukushima, R. Hanada, H. Teranishi et al., “Ghrelin directly regulates bone Formation,” Journal of Bone and Mineral Research, vol. 20, no. 5, pp. 790–798, 2005. View at: Publisher Site | Google Scholar
  56. S. W. Kim, S. J. Her, S. J. Park et al., “Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells,” Bone, vol. 37, no. 3, pp. 359–369, 2005. View at: Publisher Site | Google Scholar
  57. M. S. Huda, B. H. Durham, S. P. Wong et al., “Lack of an acute effect of ghrelin on markers of bone turnover in healthy controls and post-gastrectomy subjects,” Bone, vol. 41, no. 3, pp. 406–413, 2007. View at: Publisher Site | Google Scholar
  58. L. A. Weiss, C. Langenberg, E. Barrett-Connor et al., “Ghrelin and bone: is there an association in older adults?: the Rancho Bernardo study,” Journal of Bone and Mineral Research, vol. 21, no. 5, pp. 752–757, 2006. View at: Publisher Site | Google Scholar
  59. L. L. Baggio and D. J. Drucker, “Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2,” Best Practice & Research. Clinical Endocrinology & Metabolism, vol. 18, no. 4, pp. 531–554, 2004. View at: Publisher Site | Google Scholar
  60. D. B. Henriksen, P. Alexandersen, N. H. Bjarnason et al., “Role of gastrointestinal hormones in postprandial reduction of bone resorption,” Journal of Bone and Mineral Research, vol. 18, no. 12, pp. 2180–2189, 2003. View at: Publisher Site | Google Scholar
  61. D. B. Henriksen, P. Alexandersen, I. Byrjalsen et al., “Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2,” Bone, vol. 34, no. 1, pp. 140–147, 2004. View at: Publisher Site | Google Scholar
  62. D. B. Henriksen, P. Alexandersen, B. Hartmann et al., “Disassociation of bone resorption and formation by GLP-2A 14-day study in healthy postmenopausal women,” Bone, vol. 40, no. 3, pp. 723–729, 2007. View at: Publisher Site | Google Scholar
  63. N. H. Bjarnason, E. E. Henriksen, P. Alexandersen, S. Christgau, D. B. Henriksen, and C. Christiansen, “Mechanism of circadian variation in bone resorption,” Bone, vol. 30, no. 1, pp. 307–313, 2002. View at: Publisher Site | Google Scholar
  64. J. Cornish, K. E. Callon, A. R. King, G. J. S. Cooper, and I. R. Reid, “Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice,” The American Journal of Physiology Links, vol. 275, no. 4, pp. E694–E699, 1998. View at: Google Scholar
  65. J. Cornish, K. E. Gallon, C. Q. Lin et al., “Dissociation of the effects of amylin on osteoblast proliferation and bone resorption,” The American Journal of Physiology, vol. 274, no. 5, pp. E827–E833, 1998. View at: Google Scholar
  66. M. Zaidi, V. S. Shankar, C. L.-H. Huang, M. Paizanas, and S. R. Bloom, “Amylin in bone conservation: current evidence and hypothetical considerations,” Trends in Endocrinology and Metabolism, vol. 4, no. 8, pp. 255–259, 1993. View at: Publisher Site | Google Scholar
  67. J. Cornish and I. R. Reid, “Effects of amylin and adrenomedullin on the skeleton,” Journal of Musculoskeletal & Neuronal Interactions, vol. 2, no. 1, pp. 15–24, 2001. View at: Google Scholar
  68. J. Bronsky, R. Prusa, and J. Nevoral, “The role of amylin and related peptides in osteoporosis,” Clinica Chimica Acta; International Journal of Clinical Chemistry, vol. 373, no. 1–2, pp. 9–16, 2006. View at: Publisher Site | Google Scholar
  69. J. Cornish, K. E. Callon, U. Bava et al., “Systemic administration of adrenomedullin(27-52) increases bone volume and strength in male mice,” Journal of Endocrinologyl, vol. 170, no. 1, pp. 251–257, 2001. View at: Publisher Site | Google Scholar
  70. J. Cornish, K. E. Callon, U. Bava et al., “Preptin, another peptide product of the pancreatic ß-cell, is osteogenic in vitro and in vivo,” American Journal of Physiology. Endocrinology and Metabolism, vol. 292, no. 1, pp. E117–E122, 2007. View at: Publisher Site | Google Scholar
  71. A. Koerner and J. Kratzsch, “Kiess W. Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come,” Best Practice & Research. Clinical Endocrinology & Metabolism, vol. 19, no. 4, pp. 525–546, 2005. View at: Publisher Site | Google Scholar
  72. X. H. Luo, L. J. Guo, H. Xie et al., “Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway,” Journal of Bone and Mineral Research, vol. 21, no. 10, pp. 1648–1656, 2006. View at: Publisher Site | Google Scholar
  73. Y. Shinoda, M. Yamaguchi, N. Ogata et al., “Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways,” Journal of Cellular Biochemistry, vol. 99, no. 1, pp. 196–208, 2006. View at: Publisher Site | Google Scholar
  74. L. Lenchik, T. C. Register, F. C. Hsu et al., “Adiponectin as a novel determinant of bone mineral density and visceral fat,” Bone, vol. 33, no. 4, pp. 646–651, 2003. View at: Publisher Site | Google Scholar
  75. J. B. Richards, A. M. Valdes, K. Burling, U. C. Perks, T. D. Spector et al., “Serum adiponectin and bone mineral density in women,” Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 4, pp. 1517–1523, 2007. View at: Publisher Site | Google Scholar
  76. L. Thommesen, A. K. Stunes, M. Monjo et al., “Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 824–834, 2006. View at: Publisher Site | Google Scholar
  77. L. Patel, A. C. Buckels, I. J. Kinghorn et al., “Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators,” Biochemical and Biophysical Research Communications, vol. 300, no. 2, pp. 472–476, 2003. View at: Publisher Site | Google Scholar
  78. K. W. Oh, W. Y. Lee, E. J. Rhee et al., “The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men,” Clinical Endocrinology, vol. 63, no. 2, pp. 131–138, 2005. View at: Publisher Site | Google Scholar
  79. R. J. Bollag, Q. Zhong, K. H. Ding et al., “Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects,” Molecular and Cellular Endocrinology, vol. 177, no. 1–2, pp. 35–41, 2001. View at: Publisher Site | Google Scholar
  80. J. C. Brown, V. Mutt, and R. A. Pederson, “Further purification of a polypeptide demonstrating enterogastrone activity,” Journal of Physiology, vol. 209, no. 1, pp. 57–64, 1970. View at: Google Scholar
  81. R. J. Bollag, Q. Zhong, P. Phillips et al., “Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors,” Endocrinology, vol. 141, no. 3, pp. 1228–1235, 2000. View at: Publisher Site | Google Scholar
  82. Q. Zhong, T. Itokawa, S. Sridhar et al., “Effects of glucose-dependent insulinotropic peptide on osteoclast function,” American Journal of Physiology—Endocrinology and Metabolism, vol. 292, no. 2, pp. E543–E548, 2007. View at: Publisher Site | Google Scholar
  83. D. Xie, H. Cheng, M. Hamrick et al., “Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover,” Bone, vol. 37, no. 6, pp. 759–769, 2005. View at: Publisher Site | Google Scholar
  84. K. Tsukiyama, Y. Yamada, C. Yamada et al., “Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion,” Molecular Endocrinology, vol. 20, no. 7, pp. 1644–1651, 2006. View at: Publisher Site | Google Scholar
  85. D. Xie, Q. Zhong, K.-H. Ding et al., “Glucose-Dependent Insulinotropic Peptide-Overexpressing Transgenic Mice Have Increased Bone Mass,” Bone, vol. 40, pp. 1352–1360, 2007. View at: Google Scholar
  86. K. Miyawaki, Y. Yamada, H. Yano et al., “Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 14843–14847, 1999. View at: Publisher Site | Google Scholar
  87. K. Miyawaki, Y. Yamada, N. Ban et al., “Inhibition of gastric inhibitory polypeptide signaling prevents obesity,” Nature Medicine, vol. 8, pp. 738–742, 2002. View at: Publisher Site | Google Scholar
  88. X. Shi, M. Hamrick, B. Kang et al., The Impact of Aging on Stem Cell Differentiation Induced by Nutrition-Related Hormones, International Federation of Adipose Therapeutics and Science, Baton Rouge, La, USA, 2006.
  89. M. W. Hamrick, “Invited perspective: leptin and bone—a consensus emerging?” Bonekey Osteovision, vol. 4, pp. 99–107, 2007. View at: Google Scholar
  90. R. L. Leshan, M. Björnholm, H. Münzberg, and M. G. Myers Jr., “Leptin receptor signaling and action in the central nervous system,” Obesity (Silver Spring), vol. 14, 5, pp. 208–212, 2006. View at: Google Scholar
  91. B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001. View at: Publisher Site | Google Scholar
  92. S. Collins, C. M. Kuhn, A. E. Petro, A. G. Swick, B. A. Chrunyk, and R. S. Surwit, “Role of leptin in fat regulation,” Nature, vol. 380, no. 6576, p. 677, 1996. View at: Publisher Site | Google Scholar
  93. M. Hamrick, M. Della Fera, Y.-H. Choi, D. Hartzell, C. Pennington, and C. Baile, “Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow,” Cell and Tissue Research, vol. 327, no. 1, pp. 133–141, 2007. View at: Publisher Site | Google Scholar
  94. S. Collins and R. S. Surwit, “The β-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis,” Recent Progress in Hormone Research, vol. 56, pp. 309–328, 2001. View at: Publisher Site | Google Scholar
  95. Y. C. Ma and X. Y. Huang, “Novel signaling pathway through the β-adrenergic receptor,” Trends in Cardiovascular Medicine, vol. 12, no. 1, pp. 46–49, 2002. View at: Publisher Site | Google Scholar
  96. M. W. Hamrick, C. Pennington, D. Newton, D. Xie, and C. Isales, “Leptin deficiency produces contrasting phenotypes in bones of the limb and spine,” Bone, vol. 34, no. 3, pp. 376–383, 2004. View at: Publisher Site | Google Scholar
  97. M. W. Hamrick, M. A. Della-Fera, Y. H. Choi, C. Pennington, D. Hartzell, and C. A. Baile, “Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice,” Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 994–1001, 2005. View at: Publisher Site | Google Scholar
  98. T. Thomas, F. Gori, S. Khosla, M. D. Jensen, B. Burguera, and B. L. Riggs, “Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes,” Endocrinology, vol. 140, no. 4, pp. 1630–1638, 1999. View at: Publisher Site | Google Scholar
  99. P. Laharrague, D. Larrouy, A. M. Fontanilles et al., “High expression of leptin by human bone marrow adipocytes in primary culture,” FASEB Journal, vol. 12, no. 9, pp. 747–752, 1998. View at: Google Scholar
  100. M. W. Hamrick, K. H. Ding, C. Pennington et al., “Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin,” Bone, vol. 39, no. 4, pp. 845–853, 2006. View at: Publisher Site | Google Scholar
  101. J. Lin, H. B. Arnold, M. A. Della-Fera, M. J. Azain, D. L. Hartzell, and C. A. Baile, “Myostatin knockout in mice increases myogenesis and decreases adipogenesis,” Biochemical and Biophysical Research Communications, vol. 291, no. 3, pp. 701–706, 2002. View at: Publisher Site | Google Scholar
  102. A. C. McPherron and S. J. Lee, “Suppression of body fat accumulation in myostatin-deficient mice,” The Journal of Clinical Investigation, vol. 109, pp. 595–601, 2002. View at: Publisher Site | Google Scholar
  103. M. W. Hamrick, C. Pennington, C. N. Webb, and C. M. Isales, “Resistance to body fat gain in double-muscled mice fed a high-fat diet,” International Journal of Obesity, vol. 30, no. 5, pp. 868–870, 2006. View at: Publisher Site | Google Scholar
  104. B. Zhao, R. J. Wall, and J. Yang, “Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance,” Biochemical and Biophysical Research Communications, vol. 337, no. 1, pp. 248–255, 2005. View at: Publisher Site | Google Scholar
  105. M. Schuelke, K. R. Wagner, L. E. Stolz et al., “Myostatin mutation associated with gross muscle hypertrophy in a child,” The New England Journal of Medicine, vol. 350, no. 26, pp. 2682–2688, 2004. View at: Publisher Site | Google Scholar
  106. G. Milan, E. Dalla Nora, C. Pilon et al., “Changes in muscle myostatin expression in obese subjects after weight loss,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 6, pp. 2724–2727, 2004. View at: Publisher Site | Google Scholar
  107. J. N. Artaza, S. Bhasin, T. R. Magee et al., “Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells,” Endocrinology, vol. 146, no. 8, pp. 3547–3557, 2005. View at: Publisher Site | Google Scholar
  108. H. S. Kim, L. Liang, R. G. Dean, D. B. Hausman, D. L. Hartzell, and C. A. Baile, “Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures,” Biochemical and Biophysical Research Communications, vol. 281, no. 4, pp. 902–906, 2001. View at: Publisher Site | Google Scholar
  109. A. Rebbapragada, H. Benchabane, J. L. Wrana, A. J. Celeste, and L. Attisano, “Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis,” Molecular and Cellular Biology, vol. 23, no. 20, pp. 7230–7242, 2003. View at: Publisher Site | Google Scholar
  110. K. M. Lai, M. Gonzalez, W. T. Poueymirou et al., “Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy,” Molecular and Cellular Biology, vol. 24, no. 21, pp. 9295–9304, 2004. View at: Publisher Site | Google Scholar
  111. P. Sutrave, A. M. Kelly, and S. H. Hughes, “ski can cause selective growth of skeletal muscle in transgenic mice,” Genes & Development, vol. 4, no. 9, pp. 1462–1472, 1990. View at: Publisher Site | Google Scholar
  112. M. W. Hamrick, X. Shi, W. Zhang et al., “Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading,” Bone, vol. 40, no. 6, pp. 1544–1553, 2007. View at: Google Scholar
  113. M. Hamrick, “Increased bone mineral density in the femora of GDF8 knockout mice,” The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 272A, no. 1, pp. 388–391, 2003. View at: Publisher Site | Google Scholar
  114. M. W. Hamrick, C. Pennington, and C. D. Byron, “Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin),” Journal of Orthopaedic Research, vol. 21, no. 6, pp. 1025–1032, 2003. View at: Publisher Site | Google Scholar
  115. E. K. Nicholson, S. R. Stock, M. W. Hamrick, and M. J. Ravosa, “Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice,” Archives of Oral Biology, vol. 51, no. 1, pp. 37–49, 2006. View at: Publisher Site | Google Scholar
  116. S. Hirai, H. Matsumoto, N. Hino, H. Kawachi, T. Matsui, and H. Yano, “Myostatin inhibits differentiation of bovine preadipocyte,” Domestic Animal Endocrinology, vol. 32, no. 1, pp. 1–14, 2007. View at: Publisher Site | Google Scholar
  117. L. Cannarile, O. Zollo, F. D'Adamio et al., “Cloning, chromosomal assignment and tissue distribution of human GILZ, a glucocorticoid hormone-induced gene,” Cell Death and Differentiation, vol. 8, no. 2, pp. 201–203, 2001. View at: Publisher Site | Google Scholar
  118. F. D'Adamio, O. Zollo, R. Moraca et al., “A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death,” Immunity, vol. 7, no. 6, pp. 803–812, 1997. View at: Publisher Site | Google Scholar
  119. E. Ayroldi, O. Zollo, A. Macchiarulo, B. Di Marco, C. Marchetti, and C. Riccardi, “Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7929–7941, 2002. View at: Publisher Site | Google Scholar
  120. M. Shibanuma, T. Kuroki, and K. Nose, “Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor β 1 and other growth factors,” The Journal of Biological Chemistry, vol. 267, no. 15, pp. 10219–10224, 1992. View at: Google Scholar
  121. D. Berrebi, S. Bruscoli, N. Cohen et al., “Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10,” Blood, vol. 101, no. 2, pp. 729–738, 2003. View at: Publisher Site | Google Scholar
  122. S. Bruscoli, R. Di Virgilio, V. Donato et al., “Genomic and non-genomic effects of different glucocorticoids on mouse thymocyte apoptosis,” European Journal of Pharmacology, vol. 529, no. 1–3, pp. 63–70, 2006. View at: Publisher Site | Google Scholar
  123. P. Smit, H. Russcher, F. H. de Jong, A. O. Brinkmann, S. W. Lamberts, and J. W. Koper, “Differential regulation of synthetic glucocorticoids on gene expression levels of glucocorticoid-induced leucine zipper and interleukin-2,” Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 5, pp. 2994–3000, 2005. View at: Publisher Site | Google Scholar
  124. D. V. Delfino, M. Agostini, S. Spinicelli, P. Vito, and C. Riccardi, “Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice,” Blood, vol. 104, no. 13, pp. 4134–4141, 2004. View at: Publisher Site | Google Scholar
  125. X. Shi, W. Shi, Q. Li et al., “A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells,” EMBO Reports, vol. 4, no. 4, pp. 374–380, 2003. View at: Publisher Site | Google Scholar
  126. J. N. Beresford, C. J. Joyner, C. Devlin, and J. T. Triffitt, “The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro,” Archives of Oral Biology, vol. 39, no. 11, pp. 941–947, 1994. View at: Publisher Site | Google Scholar
  127. S. L. Cheng, J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli, “Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone,” Endocrinology, vol. 134, no. 1, pp. 277–286, 1994. View at: Publisher Site | Google Scholar
  128. P. S. Leboy, J. N. Beresford, C. Devlin, and M. E. Owen, “Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures,” Journal of Cellular Physiology, vol. 146, no. 3, pp. 370–378, 1991. View at: Publisher Site | Google Scholar
  129. A. R. Clark and M. Lasa, “Crosstalk between glucocorticoids and mitogen-activated protein kinase signalling pathways,” Current Opinion in Pharmacology, vol. 3, no. 4, pp. 404–411, 2003. View at: Publisher Site | Google Scholar
  130. C. Heinrichs, M. Colli, J. A. Yanovski et al., “Effects of fasting on the growth plate: systemic and local mechanisms,” Endocrinology, vol. 138, no. 12, pp. 5359–5365, 1997. View at: Publisher Site | Google Scholar
  131. A. F. Stewart and A. E. Broadus, “Mineral metabolism,” in Endocrinology and Metabolism, P. Felig, J. D. Baxter, A. E. Broadus, and L. A. Frohman, Eds., pp. 1317–1453, McGraw-Hill, New York, NY, USA, 2nd edition, 1987. View at: Google Scholar
  132. C. K. Welt, J. L. Chan, J. Bullen et al., “Recombinant human leptin in women with hypothalamic amenorrhea,” The New England Journal of Medicine, vol. 351, no. 10, pp. 987–997, 2004. View at: Publisher Site | Google Scholar
  133. B. A. Kaufman, M. P. Warren, J. E. Dominguez, J. Wang, S. B. Heymsfield, and R. N. Pierson, “Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels,” The Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 6, pp. 2777–2783, 2002. View at: Publisher Site | Google Scholar
  134. S. A. Lear, R. P. Pauly, and C. L. Birmingham, “Body fat, caloric intake, and plasma leptin levels in women with anorexia nervosa,” International Journal of Eating Disorders, vol. 26, no. 3, pp. 283–288, 1999. View at: Publisher Site | Google Scholar
  135. J. M. Turner, M. K. Bulsara, B. M. McDermott, G. C. Byrne, R. L. Prince, and D. A. Forbes, “Predictors of low bone density in young adolescent females with anorexia nervosa and other dieting disorders,” International Journal of Eating Disorders, vol. 30, no. 3, pp. 245–251, 2001. View at: Publisher Site | Google Scholar
  136. K. E. Ensrud, R. L. Fullman, E. Barrett-Connor et al., “Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study,” Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 4, pp. 1998–2004, 2005. View at: Publisher Site | Google Scholar
  137. J. M. Johnson, J. W. Maher, I. Samuel, D. Heitshusen, C. Doherty, and R. W. Downs, “Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D,” Journal of Gastrointestinal Surgery, vol. 9, no. 8, pp. 1106–1110, 2005. View at: Publisher Site | Google Scholar
  138. M. Rosenbaum, R. Goldsmith, D. Bloomfield et al., “Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight,” The Journal of Clinical Investigation, vol. 115, no. 12, pp. 3579–3586, 2005. View at: Publisher Site | Google Scholar
  139. S. Bogdanovich, K. J. Perkins, T. O. Krag, L. A. Whittemore, and T. S. Khurana, “Myostatin propeptide-mediated amelioration of dystrophic pathophysiology,” The FASEB Journal, vol. 19, no. 6, pp. 543–549, 2005. View at: Publisher Site | Google Scholar
  140. S. J. Lee, L. A. Reed, M. V. Davies et al., “Regulation of muscle growth by multiple ligands signaling through activin type II receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18117–18122, 2005. View at: Publisher Site | Google Scholar
  141. R. Du, Y. F. Chen, X. R. An et al., “Cloning and sequence analysis of myostatin promoter in sheep,” DNA Sequence—Journal of DNA Sequencing and Mapping, vol. 16, no. 6, pp. 412–417, 2005. View at: Publisher Site | Google Scholar
  142. H. Gilson, O. Schakman, L. Combaret et al., “Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy,” Endocrinology, vol. 148, no. 1, pp. 452–460, 2007. View at: Publisher Site | Google Scholar
  143. E. Ayroldi, G. Migliorati, S. Bruscoli et al., “Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor ?B,” Blood, vol. 98, no. 3, pp. 743–753, 2001. View at: Publisher Site | Google Scholar

Copyright © 2007 Xingming Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views129
Downloads511
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.