Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008, Article ID 159415, 13 pages
http://dx.doi.org/10.1155/2008/159415
Review Article

Clinical Use of PPAR Ligands in Cancer

Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA

Received 22 March 2008; Revised 11 August 2008; Accepted 29 September 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Jennifer L. Hatton and Lisa D. Yee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Mangelsdorf, C. Thummel, M. Beato et al., “The nuclear receptor superfamily: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Publisher · View at Google Scholar
  2. W. Wahli and E. Martinez, “Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression,” The FASEB Journal, vol. 5, no. 9, pp. 2243–2249, 1991. View at Google Scholar
  3. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar
  4. G. Krey, H. Keller, A. Mahfoudi et al., “Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 47, no. 1–6, pp. 65–73, 1993. View at Publisher · View at Google Scholar
  5. K. L. Gearing, M. Göttlicher, M. Teboul, E. Widmark, and J. A. Gustafsson, “Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 4, pp. 1440–1444, 1993. View at Publisher · View at Google Scholar
  6. S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, “Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors,” Nature, vol. 358, no. 6389, pp. 771–774, 1992. View at Publisher · View at Google Scholar
  7. P. Tontonoz, E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman, “mPPARγ2: tissue-specific regulator of an adipocyte enhancer,” Genes & Development, vol. 8, no. 10, pp. 1224–1234, 1994. View at Google Scholar
  8. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Publisher · View at Google Scholar
  9. E. D. Rosen, P. Sarraf, A. E. Troy et al., “PPAR? is required for the differentiation of adipose tissue in vivo and in vitro,” Molecular Cell, vol. 4, no. 4, pp. 611–617, 1999. View at Publisher · View at Google Scholar
  10. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar
  11. C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, and W. Wahli, “Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors,” Cell, vol. 68, no. 5, pp. 879–887, 1992. View at Publisher · View at Google Scholar
  12. H. Keller, C. Dreyer, J. Medin, A. Mahfoudi, K. Ozato, and W. Wahli, “Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 6, pp. 2160–2164, 1993. View at Publisher · View at Google Scholar
  13. G. Krey, O. Braissant, F. L'Horset et al., “Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay,” Molecular Endocrinology, vol. 11, no. 6, pp. 779–791, 1997. View at Publisher · View at Google Scholar
  14. S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors a and ?,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997. View at Publisher · View at Google Scholar
  15. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at Publisher · View at Google Scholar
  16. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Publisher · View at Google Scholar
  17. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar
  18. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” The Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar
  19. J. M. Lehmann, J. M. Lenhard, B. B. Oliver, G. M. Ringold, and S. A. Kliewer, “Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3406–3410, 1997. View at Publisher · View at Google Scholar
  20. E. Elstner, C. Müller, K. Koshizuka et al., “Ligands for peroxisome proliferator-activated receptor? and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8806–8811, 1998. View at Publisher · View at Google Scholar
  21. J. A. Keelan, T. A. Sato, K. W. Marvin, J. Lander, R. S. Gilmour, and M. D. Mitchell, “15-deoxy-Δ12,14-prostaglandin J2 a ligand for peroxisome proliferator-activated receptor-γ, induces apoptosis in JEG3 choriocarcinoma cells,” Biochemical and Biophysical Research Communications, vol. 262, no. 3, pp. 579–585, 1999. View at Publisher · View at Google Scholar
  22. N. Takahashi, T. Okumura, W. Motomura, Y. Fujimoto, I. Kawabata, and Y. Kohgo, “Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells,” FEBS Letters, vol. 455, no. 1-2, pp. 135–139, 1999. View at Publisher · View at Google Scholar
  23. C. E. Clay, A. M. Namen, G. Atsumi et al., “Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells,” Carcinogenesis, vol. 20, no. 10, pp. 1905–1911, 1999. View at Publisher · View at Google Scholar
  24. J. Padilla, K. Kaur, H. J. Cao, T. J. Smith, and R. P. Phipps, “Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ12,14-PGJ2 induce apoptosis in normal and malignant B-lineage cells,” The Journal of Immunology, vol. 165, no. 12, pp. 6941–6948, 2000. View at Google Scholar
  25. F. Yin, S. Wakino, Z. Liu et al., “Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 916–922, 2001. View at Publisher · View at Google Scholar
  26. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor ? and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar
  27. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPAR?,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar
  28. E. Mueller, P. Sarraf, P. Tontonoz et al., “Terminal differentiation of human breast cancer through PPAR?,” Molecular Cell, vol. 1, no. 3, pp. 465–470, 1998. View at Publisher · View at Google Scholar
  29. S. Kitamura, Y. Miyazaki, Y. Shinomura, S. Kondo, S. Kanayama, and Y. Matsuzawa, “Peroxisome proliferator-activated receptor γ induces growth arrest and differentiation markers of human colon cancer cells,” Japanese Journal of Cancer Research, vol. 90, no. 1, pp. 75–80, 1999. View at Google Scholar
  30. S. W. Han, M. E. Greene, J. Pitts, R. K. Wada, and N. Sidell, “Novel expression and function of peroxisome proliferator-activated receptor gamma (PPARγ) in human neuroblastoma cells,” Clinical Cancer Research, vol. 7, no. 1, pp. 98–104, 2001. View at Google Scholar
  31. S. Goetze, X.-P. Xi, H. Kawano et al., “PPAR?-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells,” Journal of Cardiovascular Pharmacology, vol. 33, no. 5, pp. 798–806, 1999. View at Publisher · View at Google Scholar
  32. X. Xin, S. Yang, J. Kowalski, and M. E. Gerritsen, “Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo,” The Journal of Biological Chemistry, vol. 274, no. 13, pp. 9116–9121, 1999. View at Publisher · View at Google Scholar
  33. D. Bishop-Bailey and T. Hla, “Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Δ12,14-prostaglandin J2,” The Journal of Biological Chemistry, vol. 274, no. 24, pp. 17042–17048, 1999. View at Publisher · View at Google Scholar
  34. D. Panigrahy, S. Singer, L. Q. Shen et al., “PPAR? ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis,” The Journal of Clinical Investigation, vol. 110, no. 7, pp. 923–932, 2002. View at Publisher · View at Google Scholar
  35. H. Huang, S. C. Campbell, D. F. Bedford et al., “Peroxisome proliferator-activated receptor ? ligands improve the antitumor efficacy of thrombospondin peptide ABT510,” Molecular Cancer Research, vol. 2, no. 10, pp. 541–550, 2004. View at Google Scholar
  36. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar
  37. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar
  38. N. Marx, G. Sukhova, C. Murphy, P. Libby, and J. Plutzky, “Macrophages in human atheroma contain PPARγ: differentiation-dependent peroxisomal proliferator-activated receptor γ (PPARγ) expression and reduction of MMP-9 activity through PPARγ activation in mononuclear phagocytes in vitro,” American Journal of Pathology, vol. 153, no. 1, pp. 17–23, 1998. View at Google Scholar
  39. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar
  40. A. J. Scheen, “Thiazolidinediones and liver toxicity,” Diabetes and Metabolism, vol. 27, no. 3, pp. 305–313, 2001. View at Google Scholar
  41. T. Mentzel and C. D. M. Fletcher, “Lipomatous tumours of soft tissues: an update,” Virchows Archiv, vol. 427, no. 4, pp. 353–363, 1995. View at Publisher · View at Google Scholar
  42. K. M. Dalal, C. R. Antonescu, and S. Singer, “Diagnosis and management of lipomatous tumors,” Journal of Surgical Oncology, vol. 97, no. 4, pp. 298–313, 2008. View at Publisher · View at Google Scholar
  43. A. E. Horvai, J. T. Schaefer, E. K. Nakakura, and R. J. O'Donnell, “Immunostaining for peroxisome proliferator gamma distinguishes dedifferentiated liposarcoma from other retroperitoneal sarcomas,” Modern Pathology, vol. 21, no. 5, pp. 517–524, 2008. View at Publisher · View at Google Scholar
  44. G. D. Demetri, C. D. M. Fletcher, E. Mueller et al., “Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-? ligand troglitazone in patients with liposarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3951–3956, 1999. View at Publisher · View at Google Scholar
  45. G. Debrock, V. Vanhentenrijk, R. Sciot, M. Debiec-Rychter, R. Oyen, and A. Van Oosterom, “A phase II trial with rosiglitazone in liposarcoma patients,” British Journal of Cancer, vol. 89, no. 8, pp. 1409–1412, 2003. View at Publisher · View at Google Scholar
  46. R. N. DuBois, R. Gupta, J. Brockman, B. S. Reddy, S. L. Krakow, and M. A. Lazar, “The nuclear eicosanoid receptor, PPARγ, is aberrantly expressed in colonic cancers,” Carcinogenesis, vol. 19, no. 1, pp. 49–53, 1998. View at Publisher · View at Google Scholar
  47. R. A. Gupta, J. A. Brockman, P. Sarraf, T. M. Willson, and R. N. DuBois, “Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 29681–29687, 2001. View at Publisher · View at Google Scholar
  48. A.-M. Lefebvre, I. Chen, P. Desreumaux et al., “Activation of the peroxisome proliferator-activated receptor ? promotes the development of colon tumors in C57BL/6J-APCMin/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Publisher · View at Google Scholar
  49. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPAR? enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar
  50. G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPAR?,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002. View at Publisher · View at Google Scholar
  51. N. Niho, M. Takahashi, T. Kitamura et al., “Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands,” Cancer Research, vol. 63, no. 18, pp. 6090–6095, 2003. View at Google Scholar
  52. N. Niho, M. Takahashi, Y. Shoji et al., “Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPAR? ligand,” Cancer Science, vol. 94, no. 11, pp. 960–964, 2003. View at Publisher · View at Google Scholar
  53. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPAR? associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar
  54. R. A. Gupta, P. Sarraf, E. Mueller et al., “Peroxisome proliferator-activated receptor ?-mediated differentiation: a mutation in colon cancer cells reveals divergent and cell type-specific mechanisms,” The Journal of Biological Chemistry, vol. 278, no. 25, pp. 22669–22677, 2003. View at Publisher · View at Google Scholar
  55. D. Bouancheau, B. Buecher, A. Jarry et al., “The PPAR? K422Q mutation does not contribute to troglitazone inefficiency in colon cancer treatment,” Cancer Letters, vol. 224, no. 1, pp. 111–116, 2005. View at Publisher · View at Google Scholar
  56. M. H. Kulke, G. D. Demetri, N. E. Sharpless et al., “A phase II study of troglitazone, an activator of the PPAR? receptor, in patients with chemotherapy-resistant metastatic colorectal cancer,” Cancer Journal, vol. 8, no. 5, pp. 395–399, 2002. View at Publisher · View at Google Scholar
  57. B. Vogelstein, E. R. Fearon, S. R. Hamilton et al., “Genetic alterations during colorectal-tumor development,” The New England Journal of Medicine, vol. 319, no. 9, pp. 525–532, 1988. View at Google Scholar
  58. E. Osawa, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor ? ligands suppress colon carcinogenesis induced by azoxymethane in mice,” Gastroenterology, vol. 124, no. 2, pp. 361–367, 2003. View at Publisher · View at Google Scholar
  59. J. D. Lewis, J. J. Deren, and G. R. Lichtenstein, “Cancer risk in patients with inflammatory bowel disease,” Gastroenterology Clinics of North America, vol. 28, no. 2, pp. 459–477, 1999. View at Publisher · View at Google Scholar
  60. C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-? ligands to inhibit the epithelial inflammatory response,” The Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999. View at Publisher · View at Google Scholar
  61. T. Tanaka, H. Kohno, S.-I. Yoshitani et al., “Ligands for peroxisome proliferator-activated receptors a and ? inhibit chemically induced colitis and formation of aberrant crypt foci in rats,” Cancer Research, vol. 61, no. 6, pp. 2424–2428, 2001. View at Google Scholar
  62. M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón De La Lastra, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces chronic colonic inflammation in rats,” Biochemical Pharmacology, vol. 69, no. 12, pp. 1733–1744, 2005. View at Publisher · View at Google Scholar
  63. J. D. Lewis, G. R. Lichtenstein, R. B. Stein et al., “An open-label trial of the PPAR? ligand rosiglitazone for active ulcerative colitis,” The American Journal of Gastroenterology, vol. 96, no. 12, pp. 3323–3328, 2001. View at Publisher · View at Google Scholar
  64. N. Suh, Y. Wang, C. R. Williams et al., “A new ligand for the peroxisome proliferator-activated receptor-? (PPAR-?), GW7845, inhibits rat mammary carcinogenesis,” Cancer Research, vol. 59, no. 22, pp. 5671–5673, 1999. View at Google Scholar
  65. C. J. Nicol, M. Yoon, J. M. Ward et al., “PPAR? influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis,” Carcinogenesis, vol. 25, no. 9, pp. 1747–1755, 2004. View at Publisher · View at Google Scholar
  66. L. D. Yee, Y. Guo, J. Bradbury, S. Suster, S. K. Clinton, and V. L. Seewaldt, “The antiproliferative effects of PPARγ ligands in normal human mammary epithelial cells,” Breast Cancer Research and Treatment, vol. 78, no. 2, pp. 179–192, 2003. View at Publisher · View at Google Scholar
  67. L. D. Yee, C. L. Sabourin, L. Liu et al., “Peroxisome proliferator-activated receptor gamma activation in human breast cancer,” International Journal of Oncology, vol. 15, no. 5, pp. 967–973, 1999. View at Google Scholar
  68. H. J. Burstein, G. D. Demetri, E. Mueller, P. Sarraf, B. M. Spiegelman, and E. P. Winer, “Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study,” Breast Cancer Research and Treatment, vol. 79, no. 3, pp. 391–397, 2003. View at Publisher · View at Google Scholar
  69. L. D. Yee, N. Williams, P. Wen et al., “Pilot study of rosiglitazone therapy in women with breast cancer: effects of short-term therapy on tumor tissue and serum markers,” Clinical Cancer Research, vol. 13, no. 1, pp. 246–252, 2007. View at Publisher · View at Google Scholar
  70. Y. Miyoshi, T. Funahashi, S. Kihara et al., “Association of serum adiponectin levels with breast cancer risk,” Clinical Cancer Research, vol. 9, no. 15, pp. 5699–5704, 2003. View at Google Scholar
  71. C. Mantzoros, E. Petridou, N. Dessypris et al., “Adiponectin and breast cancer risk,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 3, pp. 1102–1107, 2004. View at Publisher · View at Google Scholar
  72. P. F. Bruning, J. M. G. Bonfrer, P. A. H. van Noord, A. A. M. Hart, M. de Jong-Bakker, and W. J. Nooijen, “Insulin resistance and breast-cancer risk,” International Journal of Cancer, vol. 52, no. 4, pp. 511–516, 1992. View at Publisher · View at Google Scholar
  73. B. A. Stoll, “Upper abdominal obesity, insulin resistance and breast cancer risk,” International Journal of Obesity, vol. 26, no. 6, pp. 747–753, 2002. View at Publisher · View at Google Scholar
  74. H. Keller, F. Givel, M. Perroud, and W. Wahli, “Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements,” Molecular Endocrinology, vol. 9, no. 7, pp. 794–804, 1995. View at Publisher · View at Google Scholar
  75. D. Bonofiglio, S. Gabriele, S. Aquila et al., “Estrogen receptor a binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor ? signaling in breast cancer cells,” Clinical Cancer Research, vol. 11, no. 17, pp. 6139–6147, 2005. View at Publisher · View at Google Scholar
  76. H. Zhang, S.-Q. Kuang, L. Liao, S. Zhou, and J. Xu, “Haploid inactivation of the amplified-in-breast cancer 3 coactivator reduces the inhibitory effect of peroxisome proliferator-activated receptor γ and retinoid X receptor on cell proliferation and accelerates polyoma middle-T antigen-induced mammary tumorigenesis in mice,” Cancer Research, vol. 64, no. 19, pp. 7169–7177, 2004. View at Publisher · View at Google Scholar
  77. R. E. Teresi, C.-W. Shaiu, C.-S. Chen, V. K. Chatterjee, K. A. Waite, and C. Eng, “Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone,” International Journal of Cancer, vol. 118, no. 10, pp. 2390–2398, 2006. View at Publisher · View at Google Scholar
  78. T. Suzuki, S. Hayashi, Y. Miki et al., “Peroxisome proliferator-activated receptor ? in human breast carcinoma: a modulator of estrogenic actions,” Endocrine-Related Cancer, vol. 13, no. 1, pp. 233–250, 2006. View at Publisher · View at Google Scholar
  79. I. Papadaki, E. Mylona, I. Giannopoulou, S. Markaki, A. Keramopoulos, and L. Nakopoulou, “PPARγ expression in breast cancer: clinical value and correlation with ERβ,” Histopathology, vol. 46, no. 1, pp. 37–42, 2005. View at Publisher · View at Google Scholar
  80. E. Elstner, E. A. Williamson, C. Zang et al., “Novel therapeutic approach: ligands for PPAR? and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells,” Breast Cancer Research and Treatment, vol. 74, no. 2, pp. 155–165, 2002. View at Publisher · View at Google Scholar
  81. M. Hedvat, A. Jain, D. A. Carson et al., “Inhibition of HER-kinase activation prevents ERK-mediated degradation of PPAR?,” Cancer Cell, vol. 5, no. 6, pp. 565–574, 2004. View at Publisher · View at Google Scholar
  82. E. Mueller, M. Smith, P. Sarraf et al., “Effects of ligand activation of peroxisome proliferator-activated receptor ? in human prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 10990–10995, 2000. View at Publisher · View at Google Scholar
  83. T. Kubota, K. Koshizuka, E. A. Williamson et al., “Ligand for peroxisome proliferator-activated receptor ? (Troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo,” Cancer Research, vol. 58, no. 15, pp. 3344–3352, 1998. View at Google Scholar
  84. R. Butler, S. H. Mitchell, D. J. Tindall, and C. Y. F. Young, “Nonapoptotic cell death associated with S-phase arrest of prostate cancer cells via the peroxisome proliferator-activated receptor γ ligand, 15-deoxy-Δ12,14-prostaglandin J2,” Cell Growth & Differentiation, vol. 11, no. 1, pp. 49–61, 2000. View at Google Scholar
  85. J.-S. Annicotte, I. Iankova, S. Miard et al., “Peroxisome proliferator-activated receptor ? regulates E-cadherin expression and inhibits growth and invasion of prostate cancer,” Molecular and Cellular Biology, vol. 26, no. 20, pp. 7561–7574, 2006. View at Publisher · View at Google Scholar
  86. M. R. Smith, J. Manola, D. S. Kaufman et al., “Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy,” Cancer, vol. 101, no. 7, pp. 1569–1574, 2004. View at Publisher · View at Google Scholar
  87. E. L. Mazzaferri, “An overview of the management of papillary and follicular thyroid carcinoma,” Thyroid, vol. 9, no. 5, pp. 421–427, 1999. View at Google Scholar
  88. A. R. Marques, C. Espadinha, M. J. Frias et al., “Underexpression of peroxisome proliferator-activated receptor (PPAR)? in PAX8/PPAR?-negative thyroid tumours,” British Journal of Cancer, vol. 91, no. 4, pp. 732–738, 2004. View at Google Scholar
  89. S. Karger, K. Berger, M. Eszlinger et al., “Evaluation of peroxisome proliferator-activated receptor-? expression in benign and malignant thyroid pathologies,” Thyroid, vol. 15, no. 9, pp. 997–1003, 2005. View at Publisher · View at Google Scholar
  90. T. G. Kroll, P. Sarraf, L. Pecciarini et al., “PAX8-PPAR?1 fusion in oncogene human thyroid carcinoma,” Science, vol. 289, no. 5483, pp. 1357–1360, 2000. View at Publisher · View at Google Scholar
  91. M. L. Martelli, R. Iuliano, I. Le Pera et al., “Inhibitory effects of peroxisome proliferator-activated receptor ? on thyroid carcinoma cell growth,” The Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 10, pp. 4728–4735, 2002. View at Publisher · View at Google Scholar
  92. J.-W. Park, R. Zarnegar, H. Kanauchi et al., “Troglitazone, the peroxisome proliferator-activated receptor-? agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines,” Thyroid, vol. 15, no. 3, pp. 222–231, 2005. View at Publisher · View at Google Scholar
  93. A. Aiello, G. Pandini, F. Frasca et al., “Peroxisomal proliferator-activated receptor-? agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells,” Endocrinology, vol. 147, no. 9, pp. 4463–4475, 2006. View at Publisher · View at Google Scholar
  94. J.-C. Philips, C. Petite, J.-P. Willi, F. Buchegger, and C. A. Meier, “Effect of peroxisome proliferator-activated receptor γ agonist, rosiglitazone, on dedifferentiated thyroid cancers,” Nuclear Medicine Communications, vol. 25, no. 12, pp. 1183–1186, 2004. View at Publisher · View at Google Scholar
  95. E. Kebebew, M. Peng, E. Reiff et al., “A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer,” Surgery, vol. 140, no. 6, pp. 960–967, 2006. View at Publisher · View at Google Scholar
  96. S. Y. Lee, G. Y. Hur, K. H. Jung et al., “PPAR-? agonist increase gefitinib's antitumor activity through PTEN expression,” Lung Cancer, vol. 51, no. 3, pp. 297–301, 2006. View at Publisher · View at Google Scholar
  97. G. D. Girnun, E. Naseri, S. B. Vafai et al., “Synergy between PPAR? ligands and platinum-based drugs in cancer,” Cancer Cell, vol. 11, no. 5, pp. 395–406, 2007. View at Publisher · View at Google Scholar
  98. L. Fajas, V. Egler, R. Reiter et al., “The retinoblastoma-histone deacetylase 3 complex inhibits PPAR? and adipocyte differentiation,” Developmental Cell, vol. 3, no. 6, pp. 903–910, 2002. View at Publisher · View at Google Scholar
  99. H. S. Camp and S. R. Tafuri, “Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase,” The Journal of Biological Chemistry, vol. 272, no. 16, pp. 10811–10816, 1997. View at Publisher · View at Google Scholar
  100. T. Vogt, C. Hafner, K. Bross et al., “Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors,” Cancer, vol. 98, no. 10, pp. 2251–2256, 2003. View at Publisher · View at Google Scholar
  101. A. Reichle, K. Bross, T. Vogt et al., “Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma,” Cancer, vol. 101, no. 10, pp. 2247–2256, 2004. View at Publisher · View at Google Scholar
  102. A. Reichle, T. Vogt, B. Coras et al., “Targeted combined anti-inflammatory and angiostatic therapy in advanced melanoma: a randomized phase II trial,” Melanoma Research, vol. 17, no. 6, pp. 360–364, 2007. View at Publisher · View at Google Scholar
  103. R. Cunard, M. Ricote, D. DiCampli et al., “Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors,” The Journal of Immunology, vol. 168, no. 6, pp. 2795–2802, 2002. View at Google Scholar
  104. G. B. Di Gregorio, A. Yao-Borengasser, N. Rasouli et al., “Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone,” Diabetes, vol. 54, no. 8, pp. 2305–2313, 2005. View at Publisher · View at Google Scholar
  105. P. Mohanty, A. Aljada, H. Ghanim et al., “Evidence for a potent antiinflammatory effect of rosiglitazone,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 6, pp. 2728–2735, 2004. View at Publisher · View at Google Scholar
  106. P. Hau, L. Kunz-Schughart, U. Bogdahn et al., “Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas—a phase II study,” Oncology, vol. 73, no. 1-2, pp. 21–25, 2007. View at Publisher · View at Google Scholar
  107. P. Dittmar, A. Vanbuskirk, and L. Yee, “Antiangiogenic effects of PPARγ ligands on EOMA endothelial cells,” in Proceedings of the 94th American Association for Cancer Research Annual Meeting (AACR '03), p. 605, Washington, DC, USA, July 2003.
  108. M. Duvic, A. G. Martin, Y. Kim et al., “Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma,” Archives of Dermatology, vol. 137, no. 5, pp. 581–593, 2001. View at Google Scholar
  109. N. A. Rizvi, J. L. Marshall, W. Dahut et al., “A phase I study of LGD1069 in adults with advanced cancer,” Clinical Cancer Research, vol. 5, no. 7, pp. 1658–1664, 1999. View at Google Scholar
  110. R. Govindan, J. Crowley, L. Schwartzberg et al., “Phase II trial of bexarotene capsules in patients with advanced non-small-cell lung cancer after failure of two or more previous therapies,” Journal of Clinical Oncology, vol. 24, no. 30, pp. 4848–4854, 2006. View at Publisher · View at Google Scholar
  111. M. M. Gottardis, E. D. Bischoff, M. A. Shirley, M. A. Wagoner, W. W. Lamph, and R. A. Heyman, “Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand,” Cancer Research, vol. 56, no. 24, pp. 5566–5570, 1996. View at Google Scholar
  112. K. Wu, Y. Zhang, X.-C. Xu et al., “The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice,” Cancer Research, vol. 62, no. 22, pp. 6376–6380, 2002. View at Google Scholar
  113. F. J. Esteva, J. Glaspy, S. Baidas et al., “Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer,” Journal of Clinical Oncology, vol. 21, no. 6, pp. 999–1006, 2003. View at Publisher · View at Google Scholar
  114. J. A. Sepmeyer, J. P. Greer, T. Koyama, and J. A. Zic, “Open-label pilot study of combination therapy with rosiglitazone and bexarotene in the treatment of cutaneous T-cell lymphoma,” Journal of the American Academy of Dermatology, vol. 56, no. 4, pp. 584–587, 2007. View at Publisher · View at Google Scholar
  115. R. M. Cesario, J. Stone, W.-C. Yen, R. P. Bissonnette, and W. W. Lamph, “Differentiation and growth inhibition mediated via the RXR:PPARγ heterodimer in colon cancer,” Cancer Letters, vol. 240, no. 2, pp. 225–233, 2006. View at Publisher · View at Google Scholar
  116. T. Baetz, E. Eisenhauer, L. Siu et al., “A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours,” Investigational New Drugs, vol. 25, no. 3, pp. 217–225, 2007. View at Publisher · View at Google Scholar
  117. F. G. Ondrey, “Pioglitazone in oral leukoplakia: a phase II trial,” in Proceedings of the American Association for Cancer Research International Conference: Frontiers in Cancer Prevention Research, p. 170, Philadelphia, Pa, USA, December 2007.
  118. L. L. Lipscombe, T. Gomes, L. E. Lévesque, J. E. Hux, D. N. Juurlink, and D. A. Alter, “Thiazolidinediones and cardiovascular outcomes in older patients with diabetes,” The Journal of the American Medical Association, vol. 298, no. 22, pp. 2634–2643, 2007. View at Publisher · View at Google Scholar
  119. S. Singh, Y. K. Loke, and C. D. Furberg, “Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis,” The Journal of the American Medical Association, vol. 298, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar
  120. A. M. Lincoff, K. Wolski, S. J. Nicholls, and S. E. Nissen, “Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials,” The Journal of the American Medical Association, vol. 298, no. 10, pp. 1180–1188, 2007. View at Publisher · View at Google Scholar
  121. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Publisher · View at Google Scholar
  122. G. A. Diamond, L. Bax, and S. Kaul, “Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death,” Annals of Internal Medicine, vol. 147, no. 8, pp. 578–581, 2007. View at Google Scholar
  123. R. A. Ajjan and P. J. Grant, “The cardiovascular safety of rosiglitazone,” Expert Opinion on Drug Safety, vol. 7, no. 4, pp. 367–376, 2008. View at Publisher · View at Google Scholar
  124. C. E. Murphy and P. T. Rodgers, “Effects of thiazolidinediones on bone loss and fracture,” Annals of Pharmacotherapy, vol. 41, no. 12, pp. 2014–2018, 2007. View at Publisher · View at Google Scholar
  125. B. Seed, “PPARγ and colorectal carcinoma: conflicts in a nuclear family,” Nature Medicine, vol. 4, no. 9, pp. 1004–1005, 1998. View at Publisher · View at Google Scholar
  126. R. A. Gupta and R. N. DuBois, “Controversy: PPARγ a target for treatment of colorectal cancer,” American Journal of Physiology, vol. 283, no. 2, pp. G266–G269, 2002. View at Google Scholar
  127. J. El-Hage, “Preclinical and clinical safety assessments for PPAR agonists,” 2004, http://www.fda.gov/cder/present/DIA2004/Elhage.ppt.
  128. A. Rubenstrunk, R. Hanf, D. W. Hum, J.-C. Fruchart, and B. Staels, “Safety issues and prospects for future generations of PPAR modulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 1065–1081, 2007. View at Publisher · View at Google Scholar
  129. K. B. Michels, C. G. Solomon, F. B. Hu et al., “Type 2 diabetes and subsequent incidence of breast cancer in the nurses' health study,” Diabetes Care, vol. 26, no. 6, pp. 1752–1758, 2003. View at Publisher · View at Google Scholar
  130. E. Giovannucci, “Insulin, insulin-like growth factors and colon cancer: a review of the evidence,” The Journal of Nutrition, vol. 131, no. 11, pp. 3109S–3120S, 2001. View at Google Scholar
  131. J. A. Dormandy, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar
  132. R. Govindarajan, L. Ratnasinghe, D. L. Simmons et al., “Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1476–1481, 2007. View at Publisher · View at Google Scholar
  133. Y. Tsubouchi, H. Sano, Y. Kawahito et al., “Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-? agonists through induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 400–405, 2000. View at Publisher · View at Google Scholar
  134. T.-H. Chang and E. Szabo, “Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor γ in non-small cell lung cancer,” Cancer Research, vol. 60, no. 4, pp. 1129–1138, 2000. View at Google Scholar
  135. R. Govindarajan, E. R. Siegel, D. L. Simmons, and N. P. Lang, “Thiazolidinedione (TZD) exposure and risk of squamous cell carcinoma of head and neck (SCCHN),” Journal of Clinical Oncology, vol. 25, no. 18S, p. 1511, 2007. View at Google Scholar
  136. M. E. Ramos-Nino, C. D. MacLean, and B. Littenberg, “Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System,” BMC Medicine, vol. 5, article 17, pp. 1–7, 2007. View at Publisher · View at Google Scholar